Bone response to collagenized xenografts of porcine origin (mp3(®) ) and a bovine bone mineral grafting (4BONE(™) XBM) grafts in tibia defects: experimental study in rabbits
- PMID: 26434645
- DOI: 10.1111/clr.12681
Bone response to collagenized xenografts of porcine origin (mp3(®) ) and a bovine bone mineral grafting (4BONE(™) XBM) grafts in tibia defects: experimental study in rabbits
Retraction in
-
Retraction.Clin Oral Implants Res. 2018 Jul;29(7):818. doi: 10.1111/clr.13088. Epub 2018 Jun 9. Clin Oral Implants Res. 2018. PMID: 30240037
Abstract
Objectives: This study aimed to carry out the evaluation of bone response of new bone formation to two different xenografts (bovine and porcine) biomaterials inserted in rabbit tibiae.
Materials and methods: The study used a total of 20 male New Zealand albino rabbits. They received a total of 40 grafts in the proximal metaphyseal areas of both tibiae. Two biomaterials were evaluated: 20 porcine xenografts, as a bone granulate (OsteoBiol(®) MP3(®) ; Tecnoss srl, Giaveno, Italy), were placed in the proximal metaphyseal area of the right tibia, 20 anorganic bovine bone mineral grafting (4BONE(™) XBM, MIS Implants Inc., BARLEV, Israel) were placed in the left tibia. Following graft insertion, the animals were sacrificed in two groups of 10 animals, after 1 and 4 months, respectively. For each group, biomaterials were analyzed: newly formed bone, residual graft materials and the connective tissue. Histomorphometric, EDX analysis and element mapping were performed at 1 and 4 months after graft insertion.
Results: At 4 months after treatment, the bone defects displayed radiological images that showed complete repair of osseous defects. Histomorphometric evaluation showed that for the porcine xenograft, the study averages for newly formed bone represented 84.23 ± 2.9%, while bovine matrix was 79.34 ± 2.1%. For residual graft material, the porcine biomaterial had 11.23 ± 1.7% and the bovine graft 31.56 ± 2.3%. Finally, the connective tissue for MP3 was 10.33 ± 1.8%, while for the 4BONE(™) XBM we obtained 14.34 ± 2.9%. Element analysis revealed higher percentages of Ca (54 ± 9%) and P (35 ± 6%) in the group B than group A and control group (P < 0.05).
Conclusions: Defects of a critical size in a rabbit tibia model can be sealed using a bovine porous biphasic calcium phosphate and MP3 material; this supports new bone formation, creates a bridge between borders, and facilitates bone ingrowth in both biomaterials. Furthermore, this study observed partial dissolution of the mineral phase of four bone graft and complete resorption of porcine MP3 biomaterial and its incorporation into the surrounding bone. Depending on clinical needs, each biomaterial could be useful in daily clinical practice.
Keywords: 4BONE™ XBM; Mp3; biomaterial; bone graft; tibia rabbits; xenografts.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
