Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis
- PMID: 26435398
- PMCID: PMC4832360
- DOI: 10.1111/mmi.13237
Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis
Abstract
Type IV pili (Tfp), which have been studied extensively in a few Gram-negative species, are the paradigm of a group of widespread and functionally versatile nano-machines. Here, we performed the most detailed molecular characterisation of Tfp in a Gram-positive bacterium. We demonstrate that the naturally competent Streptococcus sanguinis produces retractable Tfp, which like their Gram-negative counterparts can generate hundreds of piconewton of tensile force and promote intense surface-associated motility. Tfp power 'train-like' directional motion parallel to the long axis of chains of cells, leading to spreading zones around bacteria grown on plates. However, S. sanguinis Tfp are not involved in DNA uptake, which is mediated by a related but distinct nano-machine, and are unusual because they are composed of two pilins in comparable amounts, rather than one as normally seen. Whole genome sequencing identified a locus encoding all the genes involved in Tfp biology in S. sanguinis. A systematic mutational analysis revealed that Tfp biogenesis in S. sanguinis relies on a more basic machinery (only 10 components) than in Gram-negative species and that a small subset of four proteins dispensable for pilus biogenesis are essential for motility. Intriguingly, one of the piliated mutants that does not exhibit spreading retains microscopic motility but moves sideways, which suggests that the corresponding protein controls motion directionality. Besides establishing S. sanguinis as a useful new model for studying Tfp biology, these findings have important implications for our understanding of these widespread filamentous nano-machines.
© 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Figures








References
-
- Ayers, M. , Howell, P.L. , and Burrows, L.L. (2010) Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 5: 1203–1218. - PubMed
-
- Carbonnelle, E. , Helaine, S. , Nassif, X. , and Pelicic, V. (2006) A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61: 1510–1522. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources