Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 27:(103):52724.
doi: 10.3791/52724.

Xenopus laevis as a Model to Identify Translation Impairment

Affiliations

Xenopus laevis as a Model to Identify Translation Impairment

Amélie de Broucker et al. J Vis Exp. .

Abstract

Protein synthesis is a fundamental process to gene expression impacting diverse biological processes notably adaptation to environmental conditions. The initiation step, which involves the assembly of the ribosomal subunits at the mRNA initiation codon, involved initiation factor including eIF4G1. Defects in this rate limiting step of translation are linked to diverse disorders. To study the potential consequences of such deregulations, Xenopus laevis oocytes constitute an attractive model with high degrees of conservation of essential cellular and molecular mechanisms with human. In addition, during meiotic maturation, oocytes are transcriptionally repressed and all necessary proteins are translated from preexisting, maternally derived mRNAs. This inexpensive model enables exogenous mRNA to become perfectly integrated with an effective translation. Here is described a protocol for assessing translation with a factor of interest (here eIF4G1) using stored maternal mRNA that are the first to be polyadenylated and translated during oocyte maturation as a physiological readout. At first, mRNA synthetized by in vitro transcription of plasmids of interest (here eIF4G1) are injected in oocytes and kinetics of oocyte maturation by Germinal Vesicle Breakdown detection is determined. The studied maternal mRNA target is the serine/threonine-protein-kinase mos. Its polyadenylation and its subsequent translation are investigated together with the expression and phosphorylation of proteins of the mos signaling cascade involved in oocyte maturation. Variations of the current protocol to put forward translational defects are also proposed to emphasize its general applicability. In light of emerging evidence that aberrant protein synthesis may be involved in the pathogenesis of neurological disorders, such a model provides the opportunity to easily assess this impairment and identify new targets.

PubMed Disclaimer

References

    1. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–127. - PMC - PubMed
    1. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Bio. 2005;6(4):318–327. - PubMed
    1. Lopez-Lastra M, Rivas A, Barria MI. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biol Res. 2005;38(2-3):121–146. - PubMed
    1. Terenin IM, Andreev DE, Dmitriev SE, Shatsky IN. A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res. 2013;41(3):1807–1816. - PMC - PubMed
    1. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731–745. - PMC - PubMed

Publication types

LinkOut - more resources