Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 28;137(42):13492-5.
doi: 10.1021/jacs.5b09671. Epub 2015 Oct 16.

Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

Affiliations

Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

David C Miller et al. J Am Chem Soc. .

Abstract

Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Catalytic olefin hydroamidation enabled by PCET activation of amide N–H bonds.
Scheme 1
Scheme 1. Proposed Catalytic Cycle

References

    1. Gooßen L. J.; Rauhaus J. E.; Deng G. Angew. Chem., Int. Ed. 2005, 44, 4042.10.1002/anie.200462844. - DOI - PubMed
    2. Wang X.; Widenhoefer R. A. Organometallics 2004, 23, 1649.10.1021/om0498549. - DOI
    3. LaLonde R. L.; William E.; Brenzovich W. E. Jr.; Benitez D.; Tkatchouk E.; Kelley K.; Goddard W. A. III; Toste F. D. Chem. Sci. 2010, 1, 226.10.1039/c0sc00255k. - DOI - PMC - PubMed
    4. Komeyama K.; Morimoto T.; Takaki K. Angew. Chem., Int. Ed. 2006, 45, 2938.10.1002/anie.200503789. - DOI - PubMed
    1. For selected advances in catalytic hydroamination, see:

    2. Utsunomiya M.; Hartwig J. F. J. Am. Chem. Soc. 2004, 126, 2702.10.1021/ja031542u. - DOI - PubMed
    3. Hong S.; Marks T. J. Acc. Chem. Res. 2004, 37, 673.10.1021/ar040051r. - DOI - PubMed
    4. Waser J.; Gaspar B.; Nambu H.; Carreira E. M. J. Am. Chem. Soc. 2006, 128, 11693.10.1021/ja062355+. - DOI - PubMed
    5. Cochran B. M.; Michael F. E. J. Am. Chem. Soc. 2008, 130, 2786.10.1021/ja0734997. - DOI - PubMed
    6. Shen X.; Buchwald S. L. Angew. Chem., Int. Ed. 2010, 49, 564.10.1002/anie.200905402. - DOI - PMC - PubMed
    7. Brown A. R.; Uyeda C.; Brotherton C. A.; Jacobsen E. N. J. Am. Chem. Soc. 2013, 135, 6747.10.1021/ja402893z. - DOI - PMC - PubMed
    8. Sevov C. S.; Zhou J. S.; Hartwig J. F. J. Am. Chem. Soc. 2014, 136, 3200.10.1021/ja412116d. - DOI - PubMed
    9. Yang Y.; Shi S. – L.; Liu P.; Buchwald S. L. Science 2015, 349, 62.10.1126/science.aab3753. - DOI - PMC - PubMed
    1. For examples of photoredox-mediated olefin amination, see:

    2. Nguyen T. M.; Nicewicz D. A. J. Am. Chem. Soc. 2013, 135, 9588.10.1021/ja4031616. - DOI - PMC - PubMed
    3. Nguyen T. M.; Manohar N.; Nicewicz D. A. Angew. Chem., Int. Ed. 2014, 53, 6198.10.1002/anie.201402443. - DOI - PMC - PubMed
    4. Gesmundo N. J.; Grandjean J. M.; Nicewicz D. A. Org. Lett. 2015, 17, 1316.10.1021/acs.orglett.5b00316. - DOI - PubMed
    5. Musacchio A. J.; Nguyen L. Q.; Beard G. H.; Knowles R. R. J. Am. Chem. Soc. 2014, 136, 12217.10.1021/ja5056774. - DOI - PubMed
    6. Hu Q.-X.; Chen J.-R.; Wei Q.; Liu F.-L.; Deng Q.-H.; Beauchemin A. M.; Xiao W.-J. Angew. Chem., Int. Ed. 2014, 53, 12163.10.1002/anie.201406491. - DOI - PubMed
    7. Maity S.; Zheng N. Angew. Chem., Int. Ed. 2012, 51, 9562.10.1002/anie.201205137. - DOI - PMC - PubMed
    1. Newcomb M.; Esker J. L. Tetrahedron Lett. 1991, 32, 1035.10.1016/S0040-4039(00)74480-7. - DOI
    2. Boivin J.; Callier-Dublanchet A.-C.; Quiclet-Sire B.; Schiano A.-M.; Zard S. Z. Tetrahedron 1995, 51, 6517.10.1016/0040-4020(95)00319-4. - DOI
    3. Kemper J.; Studer A. Angew. Chem., Int. Ed. 2005, 44, 4914.10.1002/anie.200463032. - DOI - PubMed
    4. Guin J.; Frohlich R.; Studer A. Angew. Chem., Int. Ed. 2008, 47, 779.10.1002/anie.200703902. - DOI - PubMed
    5. Chou C. M.; Guin J.; Muck-Lichtenfeld C.; Grimme A.; Studer A. Chem. - Asian J. 2011, 6, 1197.10.1002/asia.201000881. - DOI - PubMed
    6. Nicolaou K. C.; Baran P. S.; Zhong Y.-L.; Barluenga S.; Hunt K. W.; Kranich R.; Vega J. A. J. Am. Chem. Soc. 2002, 124, 2233.10.1021/ja012126h. - DOI - PubMed
    7. Tang Y.; Li C. Org. Lett. 2004, 6, 3229.10.1021/ol049052+. - DOI - PubMed
    1. Choi G. C.; Knowles R. R. J. Am. Chem. Soc. 2015, 137, 9226.10.1021/jacs.5b05377. - DOI - PMC - PubMed

Publication types