Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;49(1):13-9.
doi: 10.3233/JAD-150544.

Neuronal activity and amyloid plaque pathology: an update

Affiliations
Review

Neuronal activity and amyloid plaque pathology: an update

Saak V Ovsepian et al. J Alzheimers Dis. 2016.

Abstract

A breakthrough in Alzheimer's disease (AD) research came with the discovery of the link between activity-dependent release of amyloid-β (Aβ) from neurons and formation of amyloid plaques. Along with elucidating the cellular basis of behavioral-dependent fluctuations in Aβ levels in the brain, insights have been gained toward understanding the mechanisms that warrant selective vulnerability of various forebrain circuits to amyloid pathology. The notion of elevated activity as a source of excessive Aβ production and plaque formation is, however, in conflict with ample electrophysiological data, which demonstrate exceedingly intense activity (both intrinsic and synaptic) of neurons in several brain regions that are spared or marginally affected by amyloid plaques of AD. Thus, the link between the functional load of brain circuits and their vulnerability to amyloidosis, while evident, is also complex and remains poorly understood. Here, we discuss emerging data suggestive of a major role for super-intense synchronous activity of cortical and limbic networks in excessive Aβ production and plaque formation. It is proposed that dense recurrent wiring of associative areas prone to epileptic seizures might be of critical relevance to their higher susceptibility to plaque pathology and related functional impairments.

Keywords: Alzheimer’s disease; amyloid-β peptide; hetero-modal associative cortex; neuronal synchrony; non-convulsive seizure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources