Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 8;11(10):e1005496.
doi: 10.1371/journal.pgen.1005496. eCollection 2015 Oct.

Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data

Affiliations

Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data

Frederick E Dewey et al. PLoS Genet. .

Abstract

High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.

PubMed Disclaimer

Conflict of interest statement

I have read the journal's policy and the authors of this manuscript have the following competing interests: FED is currently an employee of the Regeneron Genetics Center and owns stock in Personalis, Inc; RBA owns stock in and consults for Personalis Inc; MS owns stock in and consults for Personalis Inc; EAA owns stock in and consults for Personalis Inc.

Figures

Fig 1
Fig 1. Overall heuristic for variant identification, genotype determination, initial annotation and downstream prioritization.
Abbreviations: CPIC, clinical pharmacogenomics implementation consortium; LOF, loss of function; MAF, minor allele frequency; Pgx, pharmacogenomics; SNVs, single nucleotide variants; SVs, structural variants.
Fig 2
Fig 2. STMP identifies a likely functional regulatory variant in a novel candidate disease gene for neonatal ventricular arrhythmia.
A) Pedigree (left) and representative neonatal ECG from a proband with ventricular fibrillation (right). B) UCSC Genome Browser screenshot showing ENCODE regulatory tracks surrounding a novel variant in the 5’ UTR, rs4600103 (red box), found in cis with a nonsense variant in ATP2B4, as well as linked variant (r2 = 0.87) rs4951276 (green box). Tracks for chromatin accessibility, including DNaseI hypersensitivity, and promoter histone modification (H3K4M3) ChIP-seq data are shown for human cardiac myocytes (HCM), human cardiac fibroblasts (HCF) and heart tissue. DNaseI hypersensitivity clusters, transcription factor ChIP-seq and active histone modification (H3K27Ac) ChIP-seq data are shown for multiple ENCODE cell lines. C) Functional validation of common variants using allele-specific reporter assays. Common variants at ATP2B4, rs4600103 and rs4951276 were evaluated in luciferase reporter assays in HEK293 and H9c2. Values are expressed as relative fold change versus empty vector (pLuc) and represent mean ± SEM of triplicates from three independent experiments.

References

    1. Mardis ER. The $1,000 genome, the $100,000 analysis? Genome medicine. 2010;2(11):84. Epub 2010/12/01. doi: gm205 [pii] 10.1186/gm205 - DOI - PMC - PubMed
    1. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature genetics. 2010;42(9):790–3. Epub 2010/08/17. doi: ng.646 [pii] 10.1038/ng.646 - DOI - PMC - PubMed
    1. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nature genetics. 2010;42(1):30–5. Epub 2009/11/17. doi: ng.499 [pii] 10.1038/ng.499 - DOI - PMC - PubMed
    1. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. The New England journal of medicine. 2010;362(13):1181–91. Epub 2010/03/12. 10.1056/NEJMoa0908094 . - DOI - PMC - PubMed
    1. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11(10):685–96. Epub 2010/09/18. 10.1038/nrg2841 . - DOI - PubMed

Publication types

Substances