Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 25;115(13):137201.
doi: 10.1103/PhysRevLett.115.137201. Epub 2015 Sep 24.

Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni_{3}TeO_{6}

Affiliations

Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni_{3}TeO_{6}

Jae Wook Kim et al. Phys Rev Lett. .

Abstract

We report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni_{3}TeO_{6} that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm^{2}, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. The resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.

PubMed Disclaimer

LinkOut - more resources