Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec:59 Pt A:126-30.
doi: 10.1016/j.compbiolchem.2015.09.009. Epub 2015 Sep 21.

QSAR modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids

Affiliations

QSAR modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids

Mariya A Toropova et al. Comput Biol Chem. 2015 Dec.

Abstract

Antimicrobial peptides have emerged as new therapeutic agents for fighting multi-drug-resistant bacteria. However, the process of optimizing peptide antimicrobial activity and specificity using large peptide libraries is both tedious and expensive. Therefore, computational techniques had to be applied for process optimization. In this work, the representation of the molecular structure of peptides (mastoparan analogs) by a sequence of amino acids has been used to establish quantitative structure-activity relationships (QSARs) for their antibacterial activity. The data for the studied peptides were split three times into the training, calibration and test sets. The Monte Carlo method was used as a computational technique for QSAR models calculation. The statistical quality of QSAR for the antibacterial activity of peptides for the external validation set was: n=7, r(2)=0.8067, s=0.248 (split 1); n=6, r(2)=0.8319, s=0.169 (split 2); and n=6, r(2)=0.6996, s=0.297 (split 3). The stated statistical parameters favor the presented QSAR models in comparison to 2D and 3D descriptor based ones. The Monte Carlo method gave a reasonably good prediction for the antibacterial activity of peptides. The statistical quality of the prediction is different for three random splits. However, the predictive potential is reasonably well for all cases. The presented QSAR modeling approach can be an attractive alternative of 3D QSAR at least for the described peptides.

Keywords: Antimicrobial activity; CORAL software; Mastoparan analogs; Monte Carlo method; Optimal descriptor; QSAR.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources