Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2015 Oct 12:15:56.
doi: 10.1186/s12902-015-0049-7.

Marginal structural models for the estimation of the risk of Diabetes Mellitus in the presence of elevated depressive symptoms and antidepressant medication use in the Women's Health Initiative observational and clinical trial cohorts

Affiliations
Observational Study

Marginal structural models for the estimation of the risk of Diabetes Mellitus in the presence of elevated depressive symptoms and antidepressant medication use in the Women's Health Initiative observational and clinical trial cohorts

Christine Frisard et al. BMC Endocr Disord. .

Abstract

Background: We evaluate the combined effect of the presence of elevated depressive symptoms and antidepressant medication use with respect to risk of type 2 diabetes among approximately 120,000 women enrolled in the Women's Health Initiative (WHI), and compare several different statistical models appropriate for causal inference in non-randomized settings.

Methods: Data were analyzed for 52,326 women in the Women's Health Initiative Clinical Trials (CT) Cohort and 68,169 women in the Observational Study (OS) Cohort after exclusions. We included follow-up to 2005, resulting in a median duration of 7.6 years of follow up after enrollment. Results from three multivariable Cox models were compared to those from marginal structural models that included time varying measures of antidepressant medication use, presence of elevated depressive symptoms and BMI, while adjusting for potential confounders including age, ethnicity, education, minutes of recreational physical activity per week, total energy intake, hormone therapy use, family history of diabetes and smoking status.

Results: Our results are consistent with previous studies examining the relationship of antidepressant medication use and risk of type 2 diabetes. All models showed a significant increase in diabetes risk for those taking antidepressants. The Cox Proportional Hazards models using baseline covariates showed the lowest increase in risk , with hazard ratios of 1.19 (95 % CI 1.06 - 1.35) and 1.14 (95 % CI 1.01 - 1.30) in the OS and CT, respectively. Hazard ratios from marginal structural models comparing antidepressant users to non-users were 1.35 (95 % CI 1.21 - 1.51) and 1.27 (95 % CI 1.13 - 1.43) in the WHI OS and CT, respectively - however, differences among estimates from traditional Cox models and marginal structural models were not statistically significant in both cohorts. One explanation suggests that time-dependent confounding was not a substantial factor in these data, however other explanations exist. Unadjusted Cox Proportional Hazards models showed that women with elevated depressive symptoms had a significant increase in diabetes risk that remained after adjustment for confounders. However, this association missed the threshold for statistical significance in propensity score adjusted and marginal structural models.

Conclusions: Results from the multiple approaches provide further evidence of an increase in risk of type 2 diabetes for those on antidepressants.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Flow chart describing analytic cohort included for the investigation (N = 120,495)
Fig. 2
Fig. 2
Illustration of time-dependent confounding by BMI in the association of antidepressant medication use and time to development of diabetes. Illustrates the hypothesis that there is time-varying confounding by BMI with regard to the association between diabetes risk and the presence of elevated depressive symptoms/antidepressant use. Let A denote the exposure or presence of elevated depressive symptoms/antidepressant use, L denotes measured covariates such as BMI or race, U denotes unmeasured covariates and Y denotes the outcome (diabetes). The causal graph illustrates that the probabilities of elevated depressive symptoms/antidepressant medication use (A) depends on BMI (L), but not U. There is confounding by measured covariates, but no confounding by unmeasured covariates. The probabilities of elevated depressive symptoms/antidepressant medication use at baseline (A(0)) is influenced by baseline BMI (L(0)). In our example, confounding is time dependent because exposure at time 1 (A(1)) is affected by previous exposure (A(0)) and BMI at time 1 (L(1))

References

    1. Kim CK, McGorray SP, Bartholomew BA, Marsh M, Dicken T, Wassertheil-Smoller S, et al. Depressive symptoms and heart rate variability in postmenopausal women. Arch Intern Med. 2005;165(11):1239–44. doi: 10.1001/archinte.165.11.1239. - DOI - PubMed
    1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53. doi: 10.2337/diacare.27.5.1047. - DOI - PubMed
    1. Brown LC, Majumdar SR, Johnson JA. Type of antidepressant therapy and risk of type 2 diabetes in people with depression. Diabetes Res Clin Pract. 2008;79(1):61–7. doi: 10.1016/j.diabres.2007.07.009. - DOI - PubMed
    1. Rubin RR, Ma Y, Marrero DG, Peyrot M, Barrett-Connor EL, Kahn SE, et al. Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the diabetes prevention program. Diabetes Care. 2008;31(3):420–6. doi: 10.2337/dc07-1827. - DOI - PMC - PubMed
    1. Andersohn F, Schade R, Suissa S, Garbe E. Long-term use of antidepressants for depressive disorders and the risk of diabetes mellitus. Am J Psychiatry. 2009;166(5):591–8. doi: 10.1176/appi.ajp.2008.08071065. - DOI - PubMed

Publication types

Substances