Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 1;54(49):14706-9.
doi: 10.1002/anie.201506475. Epub 2015 Oct 13.

[Ni(cod)2][Al(OR(F))4], a Source for Naked Nickel(I) Chemistry

Affiliations

[Ni(cod)2][Al(OR(F))4], a Source for Naked Nickel(I) Chemistry

Miriam M Schwab et al. Angew Chem Int Ed Engl. .

Abstract

The straightforward synthesis of the cationic, purely organometallic Ni(I) salt [Ni(cod)2](+)[Al(OR(F))4](-) was realized through a reaction between [Ni(cod)2] and Ag[Al(OR(F))4] (cod = 1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic Ni(I) olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic Ni(I) complexes.

Keywords: crystallography; cyclic voltammetry; density functional calculations; electron paramagnetic resonance; nickel(I) complexes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
a) Molecular structure of 1. Thermal ellipsoids are shown at the 50% probability level. b) Cationic parts of the molecular structures of [Rh(cod)2]+[Al(ORF)4] (3), [Ni(cod)2]+[Al(ORF)4] (1) and [Ag(cod)2]+[Al(ORF)4] (2) at 100 K. Thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths (avg.) [pm] and torsion angles θ [°] (see procedure below): 3: dRh-C = 224.1, dC=C = 136.8, θ = 10.0; 1: dNi-C = 222.3,dC=C = 135.3, θ = 53.6;2: dAg-C = 248.7, dC=C = 134.5, θ = 88.5.
Figure 2
Figure 2
a) Continuous-wave EPR spectrum of a frozen solution of 1 in CH2Cl2 with ionic liquid additive to facilitate glass formation ([MeN(Octyl)3]+[Al(ORF)4], 0.1 M) at X-band (9.400 GHz) at 100 K (solid line). Simulated spectra using parameters given in the main text (dashed line). Parts of the spectra are magnified as indicated. Experimental conditions: microwave power, 1.99 mW; magnetic field modulation amplitude, 0.1 mT (100 kHz modulation frequency); time-constant, 81.92 ms. Inset: Optimized structure (PBE0/def2-TZVPP) of [Ni(cod)2]+ is shown with spin density contour plotted with a 0.003 a.u. cut-off. b) XANES spectra of a powdered sample of 1 diluted with boron nitride at 19 K (red) and 298 K (blue). In the inset is shown the corresponding first-derivative spectra (smoothed by moving average).

References

    1. Jolly PW, Wilke G. The Organic Chemistry of Nickel. Vol. 2. Academic Press; New York: 1975.
    2. Jolly PW, Wilke G. The Organic Chemistry of Nickel. Vol. 1. Academic Press; New York: 1974.
    3. Wilke G. Angew Chem Int Ed Engl. 1988;27:185–206.
    4. Wilke G. Angew Chem. 1988;100:189–211.
    1. Keim W. Angew Chem. 1990;102:251–260.
    1. Nag K, Chakravorty A. Coord Chem Rev. 1980;33:87–147.
    2. Wilkinson G, Gillard RD, McCleverty JA. Late transition elements. Pergamon Press; Oxford: 1987. etc.
    3. Tomlinson Anthony AG. Coord Chem Rev. 1981;37:221–296.
    4. Schröder M. Coord Chem Rev. 1986;71:139–234.
    5. Foulds G. Coord Chem Rev. 987;180:1–129.
    6. Chaloner PA. J Organomet Chem. 1992;432:387–830.
    7. Chaloner PA. J Organomet Chem. 1992;442:271–519.
    8. Meyer F, Kozlowski H. Comprehensive Coordination Chemistry 5II6. (Hrsg.: J. A. Meyer, T. J. McCleverty), Pergamon; Oxford: 2003.
    9. Mitra R, Pörschke KR. Angew Chem Int Ed Engl. 2015;54:7488–7490. - PubMed
    1. Dapporto P, Fallani G, Midollini S, Sacconi L. J Chem Soc, Chem Commun. 1972:1161.
    2. Dapporto P, Fallani G, Sacconi L. Inorg Chem. 1974;13:2847–2850.
    3. Dapporto P, Sacconi L. Inorg Chim Acta. 1980;39:61–66.
    4. Scott Fred, Krüger Carl, Betz Peter. J Organomet Chem. 1990;387:113–121.
    5. Kitiachvili KD, Mindiola DJ, Hillhouse GL. J Am Chem Soc. 2004;126:10554–10555. - PubMed
    6. Bradley DC, Hursthouse MB, Smallwood RJ, Welch AJ. J Chem Soc, Chem Commun. 1972:872–873.
    7. Bai GC, Wei PR, Stephan DW. Organometallics. 2005;24:5901–5908.
    8. Gleizes A, Dartiguenave M, Dartiguenave Y, Galy J, Klein HF. J Am Chem Soc. 1977;99:5187–5189.
    1. Sacconi L, Dapporto P, Stoppioni P. J Am Chem Soc. 1975;97:5595–5596.
    2. Sacconi L, Dapporto P, Stoppioni P. Inorg Chem. 1977;16:224–227.
    3. Furenlid LR, Renner MW, Szalda DJ, Fujita E. J Am Chem Soc. 1991;113:883–892.
    4. Jung HJ, Bang H, Suh MP. Bull Korean Chem Soc. 2001;22:523–526.
    5. Suh MP, Kim HK, Kim MJ, Oh KY. Inorg Chem. 1992;31:3620–3625.
    6. Suh MP, Kim SK. Inorg Chem. 1993;32:3562–3564.
    7. Suh MP, Oh KY, Lee JW, Bae YY. J Am Chem Soc. 1996;118:777–783.

Publication types

LinkOut - more resources