Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov 1;93(3):485-92.
doi: 10.1016/j.ijrobp.2015.07.007. Epub 2015 Jul 11.

Technology for Innovation in Radiation Oncology

Affiliations

Technology for Innovation in Radiation Oncology

Indrin J Chetty et al. Int J Radiat Oncol Biol Phys. .

Abstract

Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

PubMed Disclaimer

References

    1. Iyengar P, Timmerman RD. Stereotactic ablative radiotherapy for non-small cell lung cancer: rationale and outcomes. J Natl Compr Canc Netw. 2012;10:1514–1520. - PubMed
    1. Brown JM, Brenner DJ, Carlson DJ. Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85:1159–1160. - PMC - PubMed
    1. Timmerman RD, Herman J, Cho LC. Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. J Clin Oncol. 2014;32:2847–2854. - PMC - PubMed
    1. Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9:688–699. - PubMed
    1. Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47:551–560. - PubMed

Publication types