Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr 14;6(2):352-67.
doi: 10.3390/insects6020352.

Insect Pathogenic Bacteria in Integrated Pest Management

Affiliations
Review

Insect Pathogenic Bacteria in Integrated Pest Management

Luca Ruiu. Insects. .

Abstract

The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

Keywords: Bacillus thuringiensis; IPM; Photorhabdus; Serratia; Spinosad; Streptomyces; Xenorhabdus; biological control; biopesticide; entomopathogen.

PubMed Disclaimer

References

    1. Feldhaar H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 2011;36:533–543. doi: 10.1111/j.1365-2311.2011.01318.x. - DOI
    1. Vilcinskas A. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence. 2010;1:206–214. doi: 10.4161/viru.1.3.12072. - DOI - PubMed
    1. De Maagd R.A., Bravo A., Berry C., Crickmore N., Schnepf H.E. Structure, diversity, and evolution of protein toxins from spore forming entomopathogenic bacteria. Annu. Rev. Genet. 2003;37:409–433. doi: 10.1146/annurev.genet.37.110801.143042. - DOI - PubMed
    1. Ruiu L., Satta A., Floris I. Emerging entomopathogenic bacteria for insect pest management. Bull. Insectol. 2013;66:181–186.
    1. Lacey L.A., Frutos R., Kaya H.K., Vail P. Insect pathogens as biological control agents: Do they have a future? Biol. Control. 2001;21:230–248. doi: 10.1006/bcon.2001.0938. - DOI