From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges
- PMID: 26474512
- PMCID: PMC4607538
- DOI: 10.1016/j.mbs.2015.10.002
From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges
Abstract
Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on numerous intricate interactions between parasites and hosts, and while we have learned much about these interactions, many details are still obscure. It is evident that the combined host-parasite dynamics constitutes a complex system that involves components and processes at multiple scales of time, space, and biological organization. At one end of this hierarchy we know of individual molecules that play crucial roles for the survival of a parasite or for the response and survival of its host. At the other end, one realizes that the spread of infectious diseases by far exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, can quickly reach global proportions. The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-level disease and used quite different computational approaches. This restriction to a molecular, physiological, or epidemiological level was prudent, as it has produced solid pillars of a foundation from which it might eventually be possible to launch comprehensive, multi-scale modeling efforts that make full use of the recent advances in biology and, in particular, the various high-throughput methodologies accompanying the emerging -omics revolution. This special issue contains contributions from biologists and modelers, most of whom presented and discussed their work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. These contributions highlight some of the forays into a deeper understanding of the dynamics between parasites and their hosts, and the consequences of this dynamics for the spread and treatment of infectious diseases.
Keywords: Epidemiology; Host–parasite interactions; Infectious diseases; Malaria; Modeling; Systems biology.
Copyright © 2015. Published by Elsevier Inc.
Figures
References
-
- WHO Malaria. 2013 http://www.who.int/malaria/media/world_malaria_report_2013/en/
-
- WHO World Malaria Report. 2014 www.who.int/malaria/publications/world_malaria_report_2014/en/
-
- AIDS AIDS: Global Statistics. 2014 https://www.aids.gov/hiv-aids-basics/hiv-aids-101/global-statistics/
-
- WHO Tuberculosis. 2015 http://www.who.int/mediacentre/factsheets/fs104/en/
-
- WHO Influenza. 2014 http://www.who.int/topics/influenza/en/
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
