Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2015 Oct 17:15:429.
doi: 10.1186/s12879-015-1154-y.

Frequency and impact of confounding by indication and healthy vaccinee bias in observational studies assessing influenza vaccine effectiveness: a systematic review

Affiliations
Meta-Analysis

Frequency and impact of confounding by indication and healthy vaccinee bias in observational studies assessing influenza vaccine effectiveness: a systematic review

Cornelius Remschmidt et al. BMC Infect Dis. .

Abstract

Background: Evidence on influenza vaccine effectiveness (VE) is commonly derived from observational studies. However, these studies are prone to confounding by indication and healthy vaccinee bias. We aimed to systematically investigate these two forms of confounding/bias.

Methods: Systematic review of observational studies reporting influenza VE and indicators for bias and confounding. We assessed risk of confounding by indication and healthy vaccinee bias for each study and calculated ratios of odds ratios (crude/adjusted) to quantify the effect of confounder adjustment. VE-estimates during and outside influenza seasons were compared to assess residual confounding by healthy vaccinee effects.

Results: We identified 23 studies reporting on 11 outcomes. Of these, 19 (83 %) showed high risk of bias: Fourteen due to confounding by indication, two for healthy vaccinee bias, and three studies showed both forms of confounding/bias. Adjustment for confounders increased VE on average by 12 % (95 % CI: 7-17 %; all-cause mortality), 9 % (95 % CI: 4-14 %; all-cause hospitalization) and 7 % (95 % CI: 4-10 %; influenza-like illness). Despite adjustment, nine studies showed residual confounding as indicated by significant off-season VE-estimates. These were observed for five outcomes, but more frequently for all-cause mortality as compared to other outcomes (p = 0.03) and in studies which indicated healthy vaccinee bias at baseline (p = 0.01).

Conclusions: Both confounding by indication and healthy vaccinee bias are likely to operate simultaneously in observational studies on influenza VE. Although adjustment can correct for confounding by indication to some extent, the resulting estimates are still prone to healthy vaccinee bias, at least as long as unspecific outcomes like all-cause mortality are used. Therefore, cohort studies using administrative data bases with unspecific outcomes should no longer be used to measure the effects of influenza vaccination.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Flow chart for the systematic review
Fig 2
Fig 2
Impact of adjustment for confounders, expressed as ratio of odds ratios (crude/adjusted): (a) All-cause mortality, (b) Hospitalization due to influenza or pneumonia
Fig. 3
Fig. 3
Odds ratios (95 % CIs) of influenza vaccine effectiveness during influenza seasons (black square), during pre-influenza seasons (striped circle) and post-influenza seasons (white circle) against all-cause mortality (a), death due to respiratory event (b), death due to cardiac event (c), and major adverse vascular event (d)
Fig. 4
Fig. 4
Odds ratios (95 % CIs) of influenza vaccine effectiveness during influenza seasons (black square), during pre-influenza seasons (striped circle) and post-influenza seasons (white circle) against hospitalization due to influenza or pneumonia (a), hospitalization for acute coronary syndrome (b), hospitalization due to cardiovascular diseases (c), influenza-like illness (d), prematurity (e), small for gestational age (f), and medically attended respiratory illness in infants (g)

References

    1. Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, Thomas RE. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev. 2010:CD004876. doi:10.1002/14651858. - PubMed
    1. Simonsen L, Taylor RJ, Viboud C, Miller MA, Jackson LA. Mortality benefits of influenza vaccination in elderly people: an ongoing controversy. Lancet Infect Dis. 2007;7:658–66. doi: 10.1016/S1473-3099(07)70236-0. - DOI - PubMed
    1. Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. Int J Epidemiol. 2006;35:337–44. doi: 10.1093/ije/dyi274. - DOI - PubMed
    1. Hak E, Hoes AW, Nordin J, Nichol KL. Benefits of influenza vaccine in US elderly--appreciating issues of confounding bias and precision. Int J Epidemiol. 2006;35:800–2. doi: 10.1093/ije/dyl068. - DOI - PubMed
    1. Jackson ML, Nelson JC, Weiss NS, Neuzil KM, Barlow W, Jackson LA. Influenza vaccination and risk of community-acquired pneumonia in immunocompetent elderly people: a population-based, nested case–control study. Lancet. 2008;372:398–405. doi: 10.1016/S0140-6736(08)61160-5. - DOI - PubMed

Substances