Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 10:1629:94-103.
doi: 10.1016/j.brainres.2015.10.020. Epub 2015 Oct 17.

Mechanisms of neurodegeneration after severe hypoxic-ischemic injury in the neonatal rat brain

Affiliations

Mechanisms of neurodegeneration after severe hypoxic-ischemic injury in the neonatal rat brain

Rand Askalan et al. Brain Res. .

Abstract

Purpose: Apoptosis is implicated in mild-moderate ischemic injury. Cell death pathways in the severely ischemic brain are not characterized. We sought to determine the role of apoptosis in the severely ischemic immature brain.

Methods: Seven-day old rats were randomly assigned to mild-moderate or severe cerebral hypoxia-ischemia (HI) group. After ligating the right common carotid artery, animals were subjected to hypoxia for 90min in the mild-moderate HI or 180min in the severe HI. The core and peri-infarct area were measured in H&E stained brain sections using NIS Elements software. Brain sections were processed for caspase-3, AIF and RIP3 immuno-staining. Number of positive cells were counted and compared between the two groups.

Results: The core constituted a significantly higher proportion of the ischemic lesion in the severely compared to the moderately injured brain (P<0.04) up to 7 days post-injury. Apoptotic cell death was significantly higher (P<0.05) in the core than the peri-infarct of the severe HI brain. In the peri-infarct area of severe HI, AIF-induced cell death increased over time and caspase-3 and AIF equally mediated neuronal death. Necroptosis was significantly higher (P=0.02) in the peri-infarct of the severe HI lesion compared to the moderate HI lesion. In males, but not in females, apoptosis was higher in moderate compared to severe HI.

Conclusions: Caspase-independent cell death plays an important role in severe ischemic injury. Injury severity, timing of intervention post-injury and sex of the animal are important determinants in designing neuroprotective intervention for the severely ischemic immature brain.

Keywords: Apoptosis; Neonatal brain; Neuroprotection; Severe ischemia.

PubMed Disclaimer

Publication types