A Python tool to set up relative free energy calculations in GROMACS
- PMID: 26487189
- PMCID: PMC4749424
- DOI: 10.1007/s10822-015-9873-0
A Python tool to set up relative free energy calculations in GROMACS
Abstract
Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper (LOMAP; Liu et al. in J Comput Aided Mol Des 27(9):755-770, 2013), recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge (Mobley et al. in J Comput Aided Mol Des 28(4):135-150, 2014). Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations.
Keywords: Automated setup; Free energy calculation; Hydration free energy; Transfer free energy.
Figures
References
-
- Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690.
-
- Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett. 1994;222(6):529–539.
-
- Beveridge DL, DiCapua FM. Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem. 1989;18:431–492. - PubMed
-
- Chipot C. Frontiers in free-energy calculations of biological systems. Wiley Interdisciplinary Reviews-Computational Molecular Science. 2014;4(1):71–89.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
