Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 22:7:107.
doi: 10.1186/s13073-015-0234-3.

The spliceosome, a potential Achilles heel of MYC-driven tumors

Affiliations

The spliceosome, a potential Achilles heel of MYC-driven tumors

Olga Anczuków et al. Genome Med. .

Abstract

Alterations in RNA splicing are frequent in human tumors. Two recent studies of lymphoma and breast cancer have identified components of the spliceosome - the core splicing machinery - that are essential for malignant transformation driven by the transcription factor MYC. These findings provide a direct link between MYC and RNA splicing deregulation, and raise the exciting possibility of targeting spliceosome components in MYC-driven tumors.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Splicing alterations in tumors. a In normal cells, the spliceosome, which is regulated by activators and repressors such as various serine-arginine-rich (SR) and heterogeneous nuclear ribonucleoprotein (hn) proteins, catalyzes pre-mRNA splicing, resulting in a normal, cell-type-specific splicing pattern. b In tumors, upregulation of certain splicing factors, for example SR proteins, or mutations in these factors promote abnormal splicing [3, 6, 7], leading to cancer-specific splicing patterns. c In the context of MYC-driven tumors, MYC directly upregulates transcription of splicing components, such as the splicing activator SR proteins and repressor hnRNP proteins [3, 6, 7], the PRMT5 methyltransferase, which controls Sm protein methylation [5], or the genes encoding snRNP constituents or snRNP assembly factors [5]. MYC-driven cancer cells exhibit aberrant splicing patterns, characterized by increased intron retention, and by increased skipping of exons that have weak 5′ splice sites (SS). d Alternatively, hyperactivation of MYC can lead to global upregulation of pre-mRNA levels, without directly affecting the expression of spliceosome components, and this excess of pre-mRNA overwhelms the splicing machinery [4]

References

    1. Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, et al. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell. 2012;45:567–80. doi: 10.1016/j.molcel.2011.12.034. - DOI - PubMed
    1. Yoshida K, Ogawa S. Splicing factor mutations and cancer. Wiley Interdiscip Rev RNA. 2014;5:445–59. doi: 10.1002/wrna.1222. - DOI - PubMed
    1. Biamonti G, Catillo M, Pignataro D, Montecucco A, Ghigna C. The alternative splicing side of cancer. Semin Cell Dev Biol. 2014;32:30–6. doi: 10.1016/j.semcdb.2014.03.016. - DOI - PubMed
    1. Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 2015;525:384–8. doi: 10.1038/nature14985. - DOI - PMC - PubMed
    1. Koh CM, Bezzi M, Low DH, Ang WX, Teo SX, Gay FP, et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature. 2015;523:96–100. doi: 10.1038/nature14351. - DOI - PubMed

Publication types

Substances

LinkOut - more resources