Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus
- PMID: 26491176
- PMCID: PMC4702733
- DOI: 10.1128/JCM.02257-15
Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus
Abstract
Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Figures
References
-
- Hammitt LL, Kazungu S, Morpeth SC, Gibson DG, Mvera B, Brent AJ, Mwarumba S, Onyango CO, Bett A, Akech DO, Murdoch DR, Nokes DJ, Scott JA. 2012. A preliminary study of pneumonia etiology among hospitalized children in Kenya. Clin Infect Dis 54(Suppl):S190–S199. doi:10.1093/cid/cir1071. - DOI - PMC - PubMed
-
- Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O'Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209–222. doi:10.1016/S0140-6736(13)60844-2. - DOI - PubMed
-
- World Health Organization. 2010. Guidelines for the treatment of malaria, 2nd ed World Health Organization, Geneva, Switzerland.
-
- Kariuki S. 2008. Typhoid fever in sub-Saharan Africa: challenges of diagnosis and management of infections. J Infect Dev Ctries 2:443–447. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous
