Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 22:16:63.
doi: 10.1186/s12865-015-0119-7.

Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens

Affiliations

Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens

Marie-Cécile Mortier et al. BMC Immunol. .

Abstract

Background: Requisites for an efficacious tuberculosis (TB) vaccine are a minimal genomic diversity among infectious Mycobacterium tuberculosis strains for the selected antigen, and the capability to induce robust T-cell responses in the majority of human populations. A tool in the identification of putative T-cell epitopes is in silico prediction of major histocompatibility complex (MHC)-peptide binding. Candidate TB vaccine antigen Mtb72F and its successor M72 are recombinant fusion proteins derived from Mtb32A and Mtb39A (encoded by Rv0125 and Rv1196, respectively). Adjuvanted Mtb72F and M72 candidate vaccines were shown to induce CD4(+) T-cell responses in European, US, African and Asian populations.

Methods: Sequence conservation of Mtb32A, Mtb39A, Mtb72F and M72 among 46 strains (prevalent Mycobacterium strains causing human TB disease, and H37Ra) was assessed by multiple alignments using ClustalX. For Mtb32A, Mtb39A and Mtb72F, 15-mer human leukocyte antigen (HLA)-class II-binding peptides were predicted for 158 DRB1 alleles prevailing in populations with high TB burden, 6 DRB3/4/5, 8 DQ and 6 DP alleles, using NetMHCII-pan-3.0. Results for 3 DRB1 alleles were compared with previously published allele-matched in vitro binding data. Additional analyses were done for M72. Nonameric MHC class I-binding peptides in Mtb72F were predicted for three alleles representative of class I supertypes A02, A03 and B07, using seven prediction algorithms.

Results: Sequence identity among strains was ≥98 % for each protein. Residue changes in Mtb39A comprised primarily single residue or nucleotide insertions and/or deletions in repeat regions, and were observed in 67 % of strains. For Mtb72F, 156 DRB1, 6 DRB3/4/5, 7 DQ and 5 DP alleles were predicted to contain at least one MHC class II-binding peptide, and class I-binding peptides were predicted for each HLA-A/B allele. Comparison of predicted MHC-II-binding peptides with experimental data indicated that the algorithm's sensitivity and specificity were variable among alleles.

Conclusions: The sequences from which Mtb72F and M72 are derived are highly conserved among representative Mycobacterium strains. Predicted putative T-cell epitopes in M72 and/or Mtb72F covered a wide array of HLA alleles. In silico binding predictions for class I- and II-binding putative epitopes can be complemented with biochemical verification of HLA binding capacity, processing and immunogenicity of the predicted peptides.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Numbers of predicted HLA class II-binding peptides for Mtb32A, Mtb39A and Mtb72F. HLA-II binding predictions were generated for 15-mer peptides (overlapping by 14 amino acids) of Mtb32A, Mtb39A and Mtb72F using NetMHCIIpan-3.0, for 158 DRB1 alleles. Results were normalized with respect to the different protein lengths of Mtb32A, Mtb39A and Mtb72F (i.e., 355, 391 and 729 amino acids, respectively)

Similar articles

Cited by

References

    1. Kaufmann SH, Lange C, Rao M, Balaji KN, Lotze M, Schito M, et al. Progress in tuberculosis vaccine development and host-directed therapies-a state of the art review. Lancet Respir Med. 2014;2:301–20. doi: 10.1016/S2213-2600(14)70033-5. - DOI - PubMed
    1. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanović S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50:213–9. doi: 10.1007/s002510050595. - DOI - PubMed
    1. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, et al. The Immune Epitope Database 2.0. Nucleic Acids Res. 2010;38:D854–D862. doi: 10.1093/nar/gkp1004. - DOI - PMC - PubMed
    1. Blythe MJ, Zhang Q, Vaughan K, de Castro R, Jr, Salimi N, Bui HH, et al. An analysis of the epitope knowledge related to Mycobacteria. Immunome Res. 2007;3:10. doi: 10.1186/1745-7580-3-10. - DOI - PMC - PubMed
    1. Tang ST, van Meijgaarden KE, Caccamo N, Guggino G, Klein MR, van Weeren P, et al. Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+ T cells in human tuberculosis. J Immunol. 2011;186:1068–80. doi: 10.4049/jimmunol.1002212. - DOI - PubMed

Publication types

MeSH terms