Core-Shell Ferromagnetic Nanorod Based on Amine Polymer Composite (Fe3O4@DAPF) for Fast Removal of Pb(II) from Aqueous Solutions
- PMID: 26496966
- DOI: 10.1021/acsami.5b07723
Core-Shell Ferromagnetic Nanorod Based on Amine Polymer Composite (Fe3O4@DAPF) for Fast Removal of Pb(II) from Aqueous Solutions
Abstract
Heavy metal ion removal from wastewater constitutes an important issue in the water treatment industry. Although a variety of nanomaterials have been developed for heavy metal removal via adsorption, the adsorption capacity, removal efficiency, and material recyclability still remain a challenge. Here, we present novel Fe3O4@DAPF core-shell ferromagnetic nanorods (CSFMNRs) for the removal of Pb(II) from aqueous solutions; they were prepared by the facile surface modification of twin-like ferromagnetic Fe3O4 nanorods using a 2,3-diaminophenol and formaldehyde (DAPF)-based polymer. The crystallinity and structure of the Fe3O4 nanorods were confirmed via X-ray diffraction (XRD). Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) revealed the core-shell morphology and composition of the materials. Pb(II) removal using the prepared Fe3O4@DAPF CSFMNRs was assessed, and comparable adsorption capacities (83.3 mg g(-1)) to the largest value were demonstrated. A thermodynamic study of the adsorption clearly indicated that the adsorption was exothermic and spontaneous. Due to the ferromagnetic properties with a high saturation magnetization value (56.1 emu g(-1)) of the nanorods, the nanorods exhibited excellent reusability with one of the fastest recovery times (25 s) among reported materials. Therefore, the Fe3O4@DAPF CSFMNRs can serve as recyclable adsorbent materials and as an alternative to commonly used sorbent materials for the rapid removal of heavy metals from aqueous solutions.
Keywords: Fe3O4; amine-based polymer; composite materials; ferromagnetic material; lead removal; nanorod.
Publication types
LinkOut - more resources
Full Text Sources