Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec;12(6):8223-8.
doi: 10.3892/mmr.2015.4480. Epub 2015 Oct 23.

Co-treatment of THP-1 cells with naringenin and curcumin induces cell cycle arrest and apoptosis via numerous pathways

Affiliations

Co-treatment of THP-1 cells with naringenin and curcumin induces cell cycle arrest and apoptosis via numerous pathways

Dunyun Shi et al. Mol Med Rep. 2015 Dec.

Abstract

Acute myeloid leukemia (AML) is a hematological malignancy with a low survival rate. Curcumin, which is a multi-targeted anticancer agent, has been shown to exert anti‑oxidant, anti‑inflammatory, anti‑mutagenic and anti‑carcinogenic activities. Naringenin is extracted from citrus fruits and exerts anti‑mutagenic and anti‑carcinogenic activities in various types of cancer cells. However, the effects of curcumin and naringenin in combination in AML cells have yet to be studied. The present study aimed to investigate the combination effects of curcumin and naringenin on the viability, cell cycle distribution and apoptosis rate of THP‑1 cells using cell viability assays, flow cytometry, and western blotting. Naringenin enhanced curcumin‑induced apoptosis and cell viability inhibition. In addition, curcumin and naringenin induced cell cycle arrest at S phase and G2/M phase. Numerous pathways, including p53, c‑Jun N‑terminal kinases (JNK), Akt and extracellular signal‑regulated kinases (ERK)1/2 pathways were markedly altered following treatment of THP‑1 cells with curcumin and naringenin. These results indicated that naringenin may enhance curcumin‑induced apoptosis through inhibiting the Akt and ERK pathways, and promoting the JNK and p53 pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms