Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Nov;268(1):201-21.
doi: 10.1111/imr.12365.

Structural analysis of Fc/FcγR complexes: a blueprint for antibody design

Affiliations
Review

Structural analysis of Fc/FcγR complexes: a blueprint for antibody design

Jose M M Caaveiro et al. Immunol Rev. 2015 Nov.

Abstract

The number of studies and the quality of the structural data of Fcγ receptors (FcγRs) has rapidly increased in the last few years. Upon critical examination of the literature, we have extracted general conclusions that could explain differences in affinity and selectivity of FcγRs for immunoglobulin G (IgG) based on structural considerations. FcγRs employ a little conserved asymmetric surface of domain D2 composed of two distinct subsites to recognize the well-conserved lower hinge region of IgG1-Fc. The extent of the contact interface with the antibody in subsite 1 of the receptor (but not in subsite 2), the geometrical complementarity between antibody and receptor, and the number of polar interactions contribute decisively toward strengthening the binding affinity of the antibody for the receptor. In addition, the uncertain role of the N-linked glycan of IgG for the binding and effector responses elicited by FcγRs is discussed. The available data suggest that not only the non-covalent interactions between IgG and FcγRs but also their dynamic features are essential for the immune response elicited through these receptors. We believe that the integration of structural, thermodynamic, and kinetic data will be critical for the design and validation of the next generation of therapeutic antibodies with enhanced effector capabilities.

Keywords: X-ray crystallography; biomolecular recognition; immunoglobulin G; immunoglobulin G gamma receptor; protein engineering; therapeutic antibodies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources