Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Oct 9:6:512.
doi: 10.3389/fimmu.2015.00512. eCollection 2015.

Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates

Affiliations
Review

Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates

Ana Montalban-Arques et al. Front Immunol. .

Abstract

All animals develop in association with complex microbial communities. It is now well established that commensal microbiota is essential for the correct functionality of each organ in the host. Particularly, the commensal gastro-intestinal microbiota (CGIM) is a key factor for development, immunity and nutrient conversion, rendering them bio-available for various uses. Thus, nutritional inputs generate a positive loop in maintaining host health and are essential in shaping the composition of the CGIM communities. Probiotics, which are live exogenous microorganisms, selectively provided to the host, are a promising concept for manipulating the microbiota and thus for increasing the host health status. Nevertheless, most mechanisms induced by probiotics to fortify the immune system are still a matter of debate. Alternatively, prebiotics, which are non-digestible food ingredients, can favor the growth of specific target groups of CGIM. Several metabolites are produced by the CGIM, one of the most important are the short-chain fatty acids (SCFAs), which emerge from the fermentation of complex carbohydrates. SCFAs have been recognized as key players in triggering beneficial effects elicited by simple diffusion and by specific receptors present, thus, far only in epithelial cells of higher vertebrates at different gastro-intestinal locations. However, both strategies have shown to provide resistance against pathogens during periods of high stress. In fish, knowledge about the action of pro- and prebiotics and SCFAs is still limited. Thus, in this review, we briefly summarize the mechanisms described on this topic for higher vertebrates and discuss why many of them may operate in the fish gut representing a model for different mucosal tissues.

Keywords: SCFA; fish; host–microbe; humans; immunity; microbiota; prebiotics; probiotics; vertebrates.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Potential microbial strategies to improve gut mucosal immunity in fish. The therapeutic approach mechanisms include: (A) competitive exclusion for binding sites and translocation, (B) enhanced barrier function by reversing the increased intestinal permeability, (C) enhanced mucosal immunoglobulin IgT/Z response to enteral antigens, (D) reduction of secretion of inflammatory mediators, (E) stimulation of innate immune functions, (F) stimulate the release of antimicrobial peptides (AMPs) at the mucosal layer, and (G) enhanced availability of anti-inflammatory mediators by regulatory immune cells. (H) Production of metabolic health-enhancers like SCFAs by non-digestible prebiotics, (I) diffusion of SCFAs through the enterocytes to improve mucosa barrier functions. (J) Probiotics have been suggested to confer several health benefits on the host. However, their mechanisms of action are not well understood. (K) Synbiotics are a mix of pre- and probiotics, thus their mode of action are much more difficult to define.
Figure 2
Figure 2
Host-microbial load under health and dysbiosis. Addition in diet of exogenous microbial sources may increase fish health through a host–microbe positive loop. Commensal gut microbes might be modulated by dietary administration of target microbes, non-digestible elements, or a mix of both. Expected output should turn in preventive or curative strategies. The use of pro-, pre-, and/or synbiotics is expected to restore the homeostatic stage. Assessment of the selected approach might be quantified, modeled, or dissected using omics tools, germ-free models, and microbiome analyses.

Similar articles

Cited by

References

    1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature (2012) 489:220–30.10.1038/nature11550 - DOI - PMC - PubMed
    1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature (2012) 486:207–14.10.1038/nature11234 - DOI - PMC - PubMed
    1. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (2010) 18:190–5.10.1038/oby.2009.167 - DOI - PubMed
    1. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res (2011) 10:5512–22.10.1021/pr2007945 - DOI - PubMed
    1. Kostic AD, Howitt MR, Garrett WS. Exploring host-microbiota interactions in animal models and humans. Genes Dev (2013) 27:701–18.10.1101/gad.212522.112 - DOI - PMC - PubMed

LinkOut - more resources