Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Oct 16;16(10):24673-706.
doi: 10.3390/ijms161024673.

Bioactive Compounds and Antioxidant Activity in Different Types of Berries

Affiliations
Review

Bioactive Compounds and Antioxidant Activity in Different Types of Berries

Sona Skrovankova et al. Int J Mol Sci. .

Abstract

Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

Keywords: anthocyanins; antioxidant activity; berry; bioactive compounds; health benefits; phenolic compounds.

PubMed Disclaimer

References

    1. Halvorsen B.L., Holte K., Myhrstad M.C., Barikmo I., Hvattum E., Remberg S.F., Wold A.B., Haffner K., Baugerød H., Andersen L.F., et al. A systematic screening of total antioxidants in dietary plants. J. Nutr. 2002;132:461–471. - PubMed
    1. De Souza V.R., Pereira P.A., da Silva T.L., de Oliveira Lima L.C., Pio R., Queiroz F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014;156:362–368. doi: 10.1016/j.foodchem.2014.01.125. - DOI - PubMed
    1. Slatnar A., Jakopic J., Stampar F., Veberic R., Jamnik P. The effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices. PLoS ONE. 2012;7:10. - PMC - PubMed
    1. Namiesnik J., Vearasilp K., Nemirovski A., Leontowicz H., Leontowicz M., Pasko P., Martinez-Ayala A.L., González-Aguilar G.A., Suhaj M., Gorinstein S. In vitro studies on the relationship between the antioxidant activities of some berry extracts and their binding properties to serum albumin. Appl. Biochem. Biotechnol. 2014;172:2849–2865. doi: 10.1007/s12010-013-0712-2. - DOI - PMC - PubMed
    1. Yoo Y., Saliba A.J., Prenzler P.D. Should red wine be considered a functional food? Comp. Rev. Food Sci. Food Saf. 2010;9:530–551. doi: 10.1111/j.1541-4337.2010.00125.x. - DOI - PubMed

Publication types