Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec;1(1):12.
doi: 10.1186/2197-7364-1-12. Epub 2014 Sep 19.

The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction

Affiliations

The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction

Julian Mm Rogasch et al. EJNMMI Phys. 2014 Dec.

Abstract

Background: F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]).

Methods: Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany).

Results: The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2.

Conclusions: At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.

Keywords: FDG-PET/CT reconstruction; Gibbs artifact; Gibbs phenomenon; Metabolic tumor volume delineation; PSF; Radial activity concentration profile; Ringing artifact; Signal-to-background ratio; Spatial resolution; TOF.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Determination of Gibbs artifacts (GA). The black circles represent the radial profile and the gray line depicts the smoothing spline. The black horizontal lines show A+ and A- determined from the smoothing spline.
Figure 2
Figure 2
Spatial resolution displayed as a function of reconstruction algorithm, sphere diameter, and SBR. (A) SBR1. (B) SBR2. (C) SBR3.
Figure 3
Figure 3
Radial activity profiles of the largest sphere (70 mm) depending on reconstruction algorithm and SBR. Edge elevations (Gibbs artifacts) can be observed after reconstruction with PSF + TOF and PSF (not displayed) at SBR1 (A, D, G) and SBR2 (B, E, H). SBR3 (C, F, I) shows no considerable artifacts. The gray lines indicate the respective smoothing spline.
Figure 4
Figure 4
Radial activity profiles of the smallest sphere (30 mm) depending on reconstruction algorithm and SBR. Edge elevations (Gibbs artifacts) can be observed after reconstruction with PSF + TOF and PSF (not displayed) at SBR1 (A, D, G) and SBR2 (B, E, H). SBR3 (C, F, I) shows no considerable artifacts. The gray lines indicate the respective smoothing spline.
Figure 5
Figure 5
SUVmax/SUVmean displayed as a function of reconstruction algorithm, sphere diameter, and SBR. SUVmean based on segmentation with tBC or with t50, respectively. (A, D, G) SBR1. (B, E, H) SBR2. (C, F, I) SBR3.
Figure 6
Figure 6
Relative MTV deviations displayed as a function of reconstruction algorithm, sphere diameter, and SBR. (A, D, G, J) SBR1. (B, E, H, K) SBR2. (C, F, I, L) SBR3.

References

    1. Gregory DL, Hicks RJ, Hogg A, Binns DS, Shum PL, Milner A, Link E, Ball DL, Mac Manus MP. Effect of PET/CT on management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival data. J Nucl Med. 2012;53:1007–1015. doi: 10.2967/jnumed.111.099713. - DOI - PubMed
    1. Llamas-Elvira JM, Rodríguez-Fernández A, Gutiérrez-Sáinz J, Gomez-Rio M, Bellon-Guardia M, Ramos-Font C, Rebollo-Aguirre AC, Cabello-García D, Ferrón-Orihuela A. Flourine-18 fluorodeoxyglucose PET in the preoperative staging of colorectal cancer. Eur J Nucl Med Mol Imaging. 2007;34:859–867. doi: 10.1007/s00259-006-0274-4. - DOI - PubMed
    1. Groheux D, Giacchetti S, Delord M, Hindié E, Vercellino L, Cuvier C, Toubert ME, Merlet P, Hennequin C, Espié M. 18F-FDG-PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med. 2013;54:5–11. doi: 10.2967/jnumed.112.106864. - DOI - PubMed
    1. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, Shih MC, Shimada N, Chen S, Salgia R, Appelbaum DE, Suzuki K, Chen CT, Pu Y. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38. doi: 10.1007/s00259-011-1934-6. - DOI - PubMed
    1. Hatt M, Groheux D, Martineau A, Espié M, Hindié E, Giacchetti S, De Roquancourt A, Visvikis D, Cheze-Le Rest C. Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med. 2013;54:341–349. doi: 10.2967/jnumed.112.108837. - DOI - PubMed

LinkOut - more resources