Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 15;32(4):497-504.
doi: 10.1093/bioinformatics/btv603. Epub 2015 Oct 26.

Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform

Affiliations

Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform

Uwe Baier et al. Bioinformatics. .

Abstract

Motivation: Low-cost genome sequencing gives unprecedented complete information about the genetic structure of populations, and a population graph captures the variations between many individuals of a population. Recently, Marcus et al. proposed to use a compressed de Bruijn graph for representing an entire population of genomes. They devised an O(n log g) time algorithm called splitMEM that constructs this graph directly (i.e. without using the uncompressed de Bruijn graph) based on a suffix tree, where n is the total length of the genomes and g is the length of the longest genome. Since the applicability of their algorithm is limited to rather small datasets, there is a strong need for space-efficient construction algorithms.

Results: We present two algorithms that outperform splitMEM in theory and in practice. The first implements a novel linear-time suffix tree algorithm by means of a compressed suffix tree. The second algorithm uses the Burrows-Wheeler transform to build the compressed de Bruijn graph in [Formula: see text] time, where σ is the size of the alphabet. To demonstrate the scalability of the algorithms, we applied it to seven human genomes.

Availability and implementation: https://www.uni-ulm.de/in/theo/research/seqana/.

PubMed Disclaimer

Publication types

LinkOut - more resources