Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec:106:83-93.
doi: 10.1016/j.tpb.2015.10.007. Epub 2015 Oct 23.

On the impact of epidemic severity on network immunization algorithms

Affiliations

On the impact of epidemic severity on network immunization algorithms

Bita Shams et al. Theor Popul Biol. 2015 Dec.

Abstract

There has been much recent interest in the prevention and mitigation of epidemics spreading through contact networks of host populations. Here, we investigate how the severity of epidemics, measured by its infection rate, influences the efficiency of well-known vaccination strategies. In order to assess the impact of severity, we simulate the SIR model at different infection rates on various real and model immunized networks. An extensive analysis of our simulation results reveals that immunization algorithms, which efficiently reduce the nodes' average degree, are more effective in the mitigation of weak and slow epidemics, whereas vaccination strategies that fragment networks to small components, are more successful in suppressing severe epidemics.

Keywords: Complex networks; Epidemic model; Graph; Immunization algorithms; Infection rate.

PubMed Disclaimer

Figures

Fig. 1(a)
Fig. 1(a)
(a) HEP network.
Fig. 1(b)
Fig. 1(b)
(b) AS network.
Fig. 1(c)
Fig. 1(c)
(c) Facebook-like network.
Fig. 1(d)
Fig. 1(d)
(d) Erdös–Renyi network.
Fig. 1(e)
Fig. 1(e)
(e) Scale-free network.
Fig. 1(f)
Fig. 1(f)
(f) Small-world network.
Fig. 2(a)
Fig. 2(a)
(a) HEP network.
Fig. 2(b)
Fig. 2(b)
(b) AS network.
Fig. 2(c)
Fig. 2(c)
(c) Facebook-like network.
Fig. 2(d)
Fig. 2(d)
(d) Erdös–Renyi network.
Fig. 2(e)
Fig. 2(e)
(e) Scale-free network.
Fig. 2(f)
Fig. 2(f)
(f) Small-world network.
Fig. 3(a)
Fig. 3(a)
(a) HEP network.
Fig. 3(b)
Fig. 3(b)
(b) AS network.
Fig. 3(c)
Fig. 3(c)
(c) Facebook-like network.
Fig. 3(d)
Fig. 3(d)
(d) Erdös–Renyi network.
Fig. 3(e)
Fig. 3(e)
(e) Scale-free network.
Fig. 3(f)
Fig. 3(f)
(f) Small-world network.
Fig. 4(a)
Fig. 4(a)
(a) HEP network.
Fig. 4(b)
Fig. 4(b)
(b) AS network.
Fig. 4(c)
Fig. 4(c)
(c) Facebook-like network.
Fig. 4(d)
Fig. 4(d)
(d) Erdös–Renyi network.
Fig. 4(e)
Fig. 4(e)
(e) Scale-free network.
Fig. 4(f)
Fig. 4(f)
(f) Small-world network.
Fig. 5(a)
Fig. 5(a)
(a) HEP network.
Fig. 5(b)
Fig. 5(b)
(b) AS network.
Fig. 5(c)
Fig. 5(c)
(c) Facebook-like network.
Fig. 5(d)
Fig. 5(d)
(d) Erdös–Renyi network.
Fig. 5(e)
Fig. 5(e)
(e) Scale-free network.
Fig. 5(f)
Fig. 5(f)
(f) Small-world network.

Similar articles

Cited by

References

    1. Ames G.M., George D.B., Hampson C.P., Kanarek A.R., McBee C.D., Lockwood D.R., Achter J.D., Webb C.T. Using network properties to predict disease dynamics on human contact networks. Proc. R. Soc. Biol. Sci. 2011;278:3544–3550. doi: 10.1098/rspb.2011.0290. - DOI - PMC - PubMed
    1. Badham J., Stocker R. The impact of network clustering and assortativity on epidemic behaviour. Theor. Popul. Biol. 2010;77:71–75. doi: 10.1016/j.tpb.2009.11.003. - DOI - PubMed
    1. Barabási A. Emergence of scaling in random networks. Science. 1999;286:509–512. doi: 10.1126/science.286.5439.509. - DOI - PubMed
    1. Barrat A., Barthelemy M., Pastor-Satorras R., Vespignani A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA. 2004;101:3747–3752. - PMC - PubMed
    1. Bonacich P. Power and centrality: A family of measures. Am. J. Sociol. 1987;92:1170–1182.