Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;68(11):764-71.
doi: 10.2533/chimia.2014.764.

Iron Biogeochemistry in Aquatic Systems: From Source to Bioavailability

Affiliations
Free article

Iron Biogeochemistry in Aquatic Systems: From Source to Bioavailability

Louiza Norman et al. Chimia (Aarau). 2014 Nov.
Free article

Abstract

Iron (Fe) is an essential trace element for several key metabolic processes in phytoplankton; however Fe is present in low concentration in many aquatic systems including vast oceanic regions and large lakes. In these systems, Fe can limit the growth of phytoplankton and atmospheric carbon dioxide biological fixation. Indeed Fe limitation exerts a global impact on the carbon cycle and the imprint of aquatic systems on our climate. In order to understand how aquatic systems function and increase our ability to predict their response to changing conditions, it is therefore paramount to understand when and how Fe controls operate. This review presents the complex relationship between Fe chemistry and the biology of surface waters to highlight the parameters defining the forms of Fe that are accessible for phytoplankton growth (or bioavailable). Particular attention is given to the identification of Fe sources and Fe organic complexation as these, in conjunction with biological recycling and remineralisation, mostly control Fe residence time, chemistry and bioavailability.

PubMed Disclaimer

LinkOut - more resources