Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 28;10(10):e0140822.
doi: 10.1371/journal.pone.0140822. eCollection 2015.

Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

Affiliations

Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

Benjamin F Mentiplay et al. PLoS One. .

Abstract

Introduction: Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power.

Methods: 30 healthy young adults (age: 23±5 yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change.

Results: Comparison of RFD methods revealed that a peak 200 ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31-0.79).

Conclusions: Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability and validity of these variables in clinical populations.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Testing positions for strength and power assessment.
Note: Same positions were used on the fixed dynamometer. (A) Hip flexors with the participant seated and hips and knees flexed at 90°. Dynamometer placed on the anterior aspect of the thigh, proximal to the knee joint. (B) Knee extensors with the participant seated and hip and knees flexed at 90°. Dynamometer placed on the anterior aspect of the shank, proximal to the ankle joint. (C) Knee flexors with the participant seated and hips and knees flexed at 90°. Dynamometer placed on the posterior aspect of the shank, proximal to the ankle joint. (D) Ankle plantarflexors with the participant lying supine with the ankle in plantargrade and hips and knees extended. Dynamometer placed over the metatarsal heads on the sole of the foot. (E) Ankle dorsiflexors with the participant lying supine with the ankle relaxed and hips and knees extended. Dynamometer placed over the metatarsal heads on the dorsum of the foot. (F) Hip abductors with the participant lying supine and hips and knees extended. Dynamometer placed on the lateral aspect of the shank, proximal to the ankle joint. (G) Hip adductors with the participant lying supine and hips and knees extended. Dynamometer placed on the medial aspect of the shank, proximal to the ankle joint. (H) Hip extensors with the participant lying prone and hips and knees extended. Dynamometer placed on the posterior aspect of the shank, proximal to the ankle joint.

Similar articles

Cited by

References

    1. Bohannon RW, Walsh S. Nature, reliability, and predictive value of muscle performance measures in patients with hemiparesis following stroke. Arch Phys Med Rehabil. 1992;73(8):721–5. - PubMed
    1. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95(4):1717–27. - PubMed
    1. Gerrits KH, Beltman MJ, Koppe PA, Konijnenbelt H, Elich PD, de Haan A et al. Isometric muscle function of knee extensors and the relation with functional performance in patients with stroke. Arch Phys Med Rehabil. 2009;90(3):480–7. 10.1016/j.apmr.2008.09.562 - DOI - PubMed
    1. Wiley ME, Damiano DL. Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol. 1998;40(2):100–7. - PubMed
    1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):1318–26. - PubMed