Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Feb 10;28(6):1109-28.
doi: 10.1002/adma.201502389. Epub 2015 Oct 28.

Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics

Affiliations
Review

Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics

Lise Schoonen et al. Adv Mater. .

Abstract

Compartmentalization is an essential feature found in living cells to ensure that biological processes occur without being affected by undesired external influences. Over the years many scientists have designed self-assembled soft matter structures that mimic these natural catalytic compartments. The rationale behind this research is threefold. First of all, compartmentalization leads to the creation of a secluded environment for the catalytic species, which solves compatibility issues and which can improve catalyst efficiency and selectivity. Secondly, nano- and micro-compartments are constructed with the aim to obtain microenvironments that more closely mimic the cellular architecture. These biomimetic platforms are used to attain a better understanding of how cellular processes are executed. Thirdly, natural design rules are applied to create biomolecular assemblies with unusual functionality, which for example are used as artificial organelles. Here, recent developments will be discussed regarding these compartmentalized catalytic systems, with a selected number of illustrative examples to demonstrate which strategies have been followed, and to show to what extent the ambitious goals of this field of science have been reached. The focus here is on the field of soft matter science, covering the wide spectrum from polymeric assemblies to protein nanocages.

Keywords: biomimetic structures; catalysis; compartmentalization; nanoreactors; self-assembly.

PubMed Disclaimer

Publication types

LinkOut - more resources