Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan;102(1):18-28.
doi: 10.1136/heartjnl-2015-308044. Epub 2015 Oct 28.

Computational fluid dynamics modelling in cardiovascular medicine

Affiliations
Review

Computational fluid dynamics modelling in cardiovascular medicine

Paul D Morris et al. Heart. 2016 Jan.

Abstract

This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Examples of aortic (A) and coronary (B) in silico computational fluid dynamics (CFD) workflows. (A) The aorta is identified from thoracic MRI (a), segmented and reconstructed (central image). A volumetric mesh is fabricated to fit the patient-specific geometry, shown in detail in panel (b). Accurate flow measurements are extracted from phase-contrast MRI data to inform the boundary conditions applied for CFD simulation, such as the inlet (c). The results are post-processed, details of the flow field are shown in panel (d). 0D models are coupled at the outlets so physiologically feasible flow-pressure relationships are computed at the outlets (e). These can be validated against other measurements, which in a preclinical scenario may be invasive. (B) (and accompanying online video) A coronary angiogram (a) is segmented (b) and reconstructed into a 3D in silico model. A surface and volumetric are fabricated to fit the patient-specific geometry (c). Physiological parameters such as pressure and flow are used to inform the boundary conditions applied for CFD simulation (d). The results (here pressure and flow) are post-processed and useful physiological data are extracted (e). In the preclinical, research setting simulated results are validated against an appropriate standard, for example, invasively measured values (f). (Additional information for video legend): VIRTUheart is an academic project at the University of Sheffield funded by research grants (see virtuheart.com).
Figure 2
Figure 2
A patient-specific 3D computational fluid dynamics model of an aorta. Patient-specific pressure is the proximal boundary condition. Each outlet (distal boundary) is coupled to a zero-dimensional model. The zero-dimensional models represent the impedance (Z), resistance (R) and compliance/capacitance (C) of the circulation distal to the boundaries. Output data from the 3D domain provide input to the 0D model and vice versa. The algebraically coded 0D models compute parameters which are returned back to dynamically inform the 3D simulation. An alternative would be to couple a 1D wave transmission model at the outlets which may provide higher fidelity simulation results, especially in the aorta where the physiology is influenced by wave reflections.
Figure 3
Figure 3
A computational fluid dynamics (CFD) model demonstrating the correlation between wall shear stress (WSS) and restenosis in coronary artery disease. (A) Structural modelling of stent insertion in porcine coronary arteries reconstructed from micro-CT, and stent–artery coupling obtained after arterial recoil. (B) Comparison between the in vivo histological images (left) and corresponding sections from the structural simulation (right) demonstrating excellent agreement. (C) Results of the CFD simulations in terms of the spatial distribution of WSS magnitude over the arterial wall. (D) The correlation between areas characterised by low WSS (orange lines) and in-stent restenosis after 14 days. The CFD simulation of WSS has identified areas of reduced shear and restenosis with excellent agreement. Figure reproduced from Morlacchi et al with kind permission from Springer Science and Business Media.
Figure 4
Figure 4
Computational fluid dynamics (CFD) model of an intracranial berry aneurysm from the @neurist project. Panel (A) demonstrates the reconstructed surface mesh. Panels (B) and (C) demonstrate the CFD simulated pressure (B) and wall shear stress (C) acting upon the aneurysm wall, which may be useful in predicting risk of rupture on a patient-specific basis.
Figure 5
Figure 5
Segmentation, reconstruction and 3D simulation of a chronic type B aortic dissection with true and false lumen in systole (top row) and diastole (bottom row). The primary entry point (top arrow) is close to the left subclavian artery. Two more communications (‘re-entries’) are seen distally. Computational fluid dynamics simulation allows the flow through each re-entry point to be studied separately in order to predict response to intervention. During systole simulation demonstrates high blood flow velocity through the primary entry point. However, simulation predicts significant flow through the first re-entry point in systole, and even higher during diastole, thus demonstrating that closure of the primary entry point alone will not be sufficient to induce false lumen thrombosis and avoid further expansion. Reproduced with permission from Chen et al, 2013.

References

    1. Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 2009;11:109–34. 10.1146/annurev.bioeng.10.061807.160521 - DOI - PMC - PubMed
    1. Smith N, de Vecchi A, McCormick M, et al. euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 2011;1:349–64. 10.1098/rsfs.2010.0048 - DOI - PMC - PubMed
    1. Gasser TC, Nchimi A, Swedenborg J, et al. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur J Vasc Endovasc Surg 2014;47:288–95. 10.1016/j.ejvs.2013.12.018 - DOI - PubMed
    1. Radaelli AG, Augsburger L, Cebral JR, et al. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the Virtual Intracranial Stenting Challenge 2007. J Biomech 2008;41:2069–81. 10.1016/j.jbiomech.2008.04.035 - DOI - PubMed
    1. Morris PD, Ryan D, Morton AC, et al. Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) Study. JACC Cardiovasc Interv 2013;6:149–57. 10.1016/j.jcin.2012.08.024 - DOI - PubMed

Publication types

MeSH terms