Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec:72:192-203.
doi: 10.1016/j.exger.2015.10.012. Epub 2015 Oct 29.

Impact of vitamin C on the cardiometabolic and inflammatory profiles of mice lacking a functional Werner syndrome protein helicase

Affiliations

Impact of vitamin C on the cardiometabolic and inflammatory profiles of mice lacking a functional Werner syndrome protein helicase

Lucie Aumailley et al. Exp Gerontol. 2015 Dec.

Abstract

Werner syndrome (WS) is a premature aging disorder caused by mutations in a DNA helicase/exonuclease. Mice lacking the helicase domain of this protein exhibit metabolic abnormalities that are reversed by vitamin C. In this study, we used a targeted metabolomic approach to identify serum metabolites significantly altered in young mutant mice treated with or without vitamin C. We also measured several serum inflammatory and cardiometabolic factors. We show that young mutant mice exhibit an increase in serum hydroxyproline and plasminogen activator inhibitor-1 (PAI-1), markers of cardiovascular diseases and inflammation, before they exhibit morphological anomalies in different tissues. We also observed an increase in three very long chain lysophosphatidylcholines underlying peroxisome perturbation. Vitamin C reversed the concentrations of these metabolites and PAI-1 to wild type values. Transcriptomic analyses on the liver of mutant mice revealed a decrease in the expression of genes involved in fatty acid degradation compared to wild type animals. Vitamin C treatment increased the expression of genes involved in glutathione metabolism and the synthesis of unsaturated fatty acids in these mice. These results show that changes at the transcriptomic level concord with the alterations of several serum metabolites in these mice. Finally, we found that a mislocalization of the Wrn mutant protein in the liver endoplasmic reticulum fraction increased oxidative stress in that cellular compartment. Vitamin C reversed this oxidative stress. To conclude, this study provides novel potential predictive cardiometabolic biomarkers in WS that will allow the assessment of the impact of vitamin C on patients with WS.

Keywords: Endoplasmic reticulum; Metabolomic; Mouse aging; Transcriptome; Vitamin C; Werner syndrome.

PubMed Disclaimer

Publication types

MeSH terms