Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 9;15(12):8266-70.
doi: 10.1021/acs.nanolett.5b03829. Epub 2015 Nov 5.

Kinetic Role of Carbon in Solid-State Synthesis of Zirconium Diboride using Nanolaminates: Nanocalorimetry Experiments and First-Principles Calculations

Affiliations

Kinetic Role of Carbon in Solid-State Synthesis of Zirconium Diboride using Nanolaminates: Nanocalorimetry Experiments and First-Principles Calculations

Dongwoo Lee et al. Nano Lett. .

Abstract

Reactive nanolaminates afford a promising route for the low-temperature synthesis of zirconium diboride, an ultrahigh-temperature ceramic with metallic properties. Although the addition of carbon is known to facilitate sintering of ZrB2, its effect on the kinetics of the formation reaction has not been elucidated. We have employed a combined approach of nanocalorimetry and first-principles theoretical studies to investigate the kinetic role of carbon in the synthesis of ZrB2 using B4C/Zr reactive nanolaminates. Structural characterization of the laminates by XRD and TEM reveal that the reaction proceeds via interdiffusion of the B4C and Zr layers, which produces an amorphous Zr3B4C alloy. This amorphous alloy then crystallizes to form a supersaturated ZrB2(C) compound. A kinetic analysis shows that carbon lowers the energy barriers for both interdiffusion and crystallization by more than 20%. Energetic calculations based on first-principles modeling suggest that the reduction of the diffusion barrier may be attributed to the stronger bonding between Zr and C as compared to the bonding between Zr and B.

Keywords: Zirconium diboride; carbon; first-principles calculation; nanocalorimetry; reactive nanolaminate.

PubMed Disclaimer

Publication types

LinkOut - more resources