Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct;23(5):467-71.
doi: 10.1590/1678-775720150170.

Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells

Affiliations

Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells

Leticia Boldrin Mestieri et al. J Appl Oral Sci. 2015 Oct.

Abstract

Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus.

Objective: The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs).

Material and methods: The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%).

Results: MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure.

Conclusions: The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Endodontic sealers evaluated
Figure 2
Figure 2. Cell viability rate (%) according to MTT assay in human dental pulp cells (hDPCs) exposed to MTA Plus (MTAP), MTA Fillapex (MTAF), FillCanal (FC) and culture medium used as control (CT). Bars with different letters represent significant differences between groups in each concentration of the material extracts (p<0.05)
Figure 3
Figure 3. Cell viability rate (%) according to NR assay in human dental pulp cells (hDPCs) exposed to MTA Plus (MTAP), MTA Fillapex (MTAF), FillCanal (FC) and culture medium used as control (CT). Bars with different letters represent significant differences between groups in each concentration of the material extracts (p<0.05)
Figure 4
Figure 4. Alkaline phosphatase (ALP) enzyme activity in human dental pulp cells (hDPCs) exposed to MTA Plus (MTAP), MTA Fillapex (MTAF), FillCanal (FC) and culture medium used as control (CT). Bars with different letters represent significant differences between groups in each period of time (p<0.05)

References

    1. Al-Hiyasat AS, Tayyar M, Darmani H. Cytotoxicity evaluation of various resin based root canal sealers. Int Endod J. 2010;43:148–153. - PubMed
    1. Atari M, Barajas M, Hernández-Alfaro F, Gil C, Fabregat M, Ferrés Padró E, et al. Isolation of pluripotent stem cells from human third molar dental pulp. Histol Histopathol. 2011;26:1057–1070. - PubMed
    1. Beck GR., Jr Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem. 2003;90:234–243. - PubMed
    1. Bin CV, Valera MC, Camargo SE, Rabelo SB, Silva GO, Balducci I, et al. Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. J Endod. 2012;38:495–500. - PubMed
    1. Braga JM, Oliveira RR, Castro Martins R, Vieira LQ, Sobrinho AP. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity. Dent Traumatol. 2015 Epub ahead of print. - PubMed

Publication types

MeSH terms