Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 15;542(Pt A):551-61.
doi: 10.1016/j.scitotenv.2015.10.073. Epub 2015 Nov 3.

Greenhouse gases emission from soils under major crops in Northwest India

Affiliations

Greenhouse gases emission from soils under major crops in Northwest India

N Jain et al. Sci Total Environ. .

Abstract

Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008-2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N2O emissions were significantly different (P>0.05) among the crop types. Emission of N2O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r(2)=0.74, P<0.05). The cumulative flux of CH4 from the rice crop was 28.64±4.40 kg ha(-1), while the mean seasonal integrated flux of CO2 from soils ranged from 3058±236 to 3616±157 kg CO2 ha(-1) under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO2 eq. ha(-1) (pigeon pea) and 3968 kg CO2 eq. ha(-1) (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha(-1)) and largest in wheat (1042 kg C ha(-1)). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.

Keywords: Carbon dioxide; Cereals; Methane; Millets; Nitrous oxide; Oilseeds; Pulses.

PubMed Disclaimer

Publication types

LinkOut - more resources