Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Feb;30(2):255-63.
doi: 10.1038/eye.2015.221. Epub 2015 Nov 6.

Light pollution: the possible consequences of excessive illumination on retina

Affiliations
Review

Light pollution: the possible consequences of excessive illumination on retina

M A Contín et al. Eye (Lond). 2016 Feb.

Abstract

Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effect of Light Pollution on retina. Photoreceptor cells, retinal pigment epithelium, and intrinsically photosensitive retinal ganglion cells could be affected by high or prolonged low-light exposure, promoted by light during the night or indoor artificial illumination with high irradiance. These events may affect the general retinal physiology or accelerate some genetic diseases ending in blindness. These phenomena called light pollution is promoted by the customs of modern life where the human society had changed the natural circadian ld cycle. Furthermore, as a consequence of photoreceptor cells' death (cone, rod, and intrinsically photosensitive retinal ganglion cells); light pollution could have effects on the pineal organ, producing desynchronization of the circadian system, malfunctions in pupillary light reflex, and metabolic dysfunctions endangering human health. R, rods; C, cones; H, horizontal; B, bipolar; A, amacrine; ipRGCs, intrinsically photosensitive retinal ganglion cells; RPE, retinal pigment epithelium.

References

    1. 1Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073. - PubMed
    1. 2Guido ME, Garbarino-Pico E, Contin M, Valdez DJ, Nieto PS, Verra DM et al. Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system. Prog Neurobiol 2010; 92: 484–504. - PubMed
    1. 3Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X et al. Global change and the ecology of cities. Science 2008; 319: 756–760. - PubMed
    1. 4Navara KJ, Nelson RJ. The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res 2007; 43: 215–224. - PubMed
    1. 5Shuboni D, Yan L. Nighttime dim light exposure alters the responses of the circadian system. Neuroscience 2010; 170: 1172–1178. - PubMed

Publication types

MeSH terms

LinkOut - more resources