Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan;36(1):108-21.
doi: 10.1161/ATVBAHA.115.306642. Epub 2015 Nov 5.

Microsomal Prostaglandin E Synthase-1-Derived PGE2 Inhibits Vascular Smooth Muscle Cell Calcification

Affiliations

Microsomal Prostaglandin E Synthase-1-Derived PGE2 Inhibits Vascular Smooth Muscle Cell Calcification

Cheng Gao et al. Arterioscler Thromb Vasc Biol. 2016 Jan.

Abstract

Objective: Chronic administration of selective cyclooxygenase-2 (COX-2) inhibitors leads to an increased risk of adverse cardiovascular events, including myocardial infarction and stroke. Vascular smooth muscle cell (VSMC) calcification, a common complication of chronic kidney disease, is directly related to cardiovascular morbidity and mortality. Here, we tested whether specific COX-2 inhibition affects vascular calcification during chronic renal failure.

Approach and results: The COX-2-specific inhibitors NS398 and SC236 significantly increased high-phosphate (Pi)-induced VSMC calcification. Similarly, COX-2(-/-) VSMCs, COX-2(-/-) aortas rings treated with high Pi and adenine diet-induced COX-2(-/-) chronic renal failure mice displayed enhanced calcium deposition. Metabolomic analysis revealed the differential suppression of PGE2 production by COX-1- and COX-2-specific inhibitors in high-Pi-stimulated VSMCs, indicating the involvement of PGE2 during COX-2 inhibition-aggravated vascular calcification. Indeed, exogenous PGE2 reduced alkaline phosphatase activity, osteogenic transdifferentiation, apoptosis, and calcification of VSMCs. In accordance, downregulation of microsomal prostaglandin E synthase (mPGES)-1 in VSMCs, mPGES-1(-/-) aorta with high-Pi stimulation and mPGES-1(-/-) chronic renal failure mice resulted in enhanced vascular mineralization. Further applications of RNAi and specific antagonists for PGE2 receptors indicated EP4 may mediate PGE2-inhibited vascular calcification.

Conclusions: Our data revealed the pivotal role of COX-2-mPGES-1-PGE2 axis in vascular calcification. The selective inhibition of COX-2 or mPGES-1 may increase the risk of calcification and subsequent adverse cardiovascular events during chronic renal failure.

Keywords: adenine; calcium; myocardial infarction; phosphates; vascular calcification.

PubMed Disclaimer

Publication types

MeSH terms