Genetic and epigenetic characterization of hypodiploid acute lymphoblastic leukemia
- PMID: 26544893
- PMCID: PMC4767471
- DOI: 10.18632/oncotarget.6000
Genetic and epigenetic characterization of hypodiploid acute lymphoblastic leukemia
Abstract
Purpose: To investigate the genetic and epigenetic landscape of hypodiploid (<45 chromosomes) acute lymphoblastic leukemia (ALL).
Methods: Single nucleotide polymorphism array, whole exome sequencing, RNA sequencing, and methylation array analyses were performed on eleven hypodiploid ALL cases.
Results: In line with previous studies, mutations in IKZF3 and FLT3 were detected in near-haploid (25-30 chromosomes) cases. Low hypodiploidy (31-39 chromosomes) was associated with somatic TP53 mutations. Notably, mutations of this gene were also found in 3/3 high hypodiploid (40-44 chromosomes) cases, suggesting that the mutational patterns are similar in low hypodiploid and high hypodiploid ALL. The high hypodiploid ALLs frequently displayed substantial cell-to-cell variability in chromosomal content, indicative of chromosomal instability; a rare phenomenon in ALL. Gene expression analysis showed that genes on heterodisomic chromosomes were more highly expressed in hypodiploid cases. Cases clustered according to hypodiploid subtype in the unsupervised methylation analyses, but there was no association between chromosomal copy number and methylation levels. A comparison between samples obtained at diagnosis and relapse showed that the relapse did not arise from the major diagnostic clone in 3/4 cases.
Conclusions: Taken together, our data support the conclusion that near-haploid and low hypodiploid ALL are different with regard to mutational profiles and also suggest that ALL cases with high hypodiploidy may harbor chromosomal instability.
Keywords: acute lymphoblastic leukemia; chromosomal instability; hypodiploidy; next generation sequencing.
Conflict of interest statement
The authors declare no competing financial interests.
Figures

References
-
- Harrison CJ, Moorman AV, Broadfield ZJ, Cheung KL, Harris RL, Reza Jalali G, Robinson HM, Barber KE, Richards SM, Mitchell CD, Eden TO, Hann IM, Hil FG, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. British Journal of Haematology. 2004;125:552–559. - PubMed
-
- Mitelman F, Johansson B, Mertens F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman.
-
- Pui CH, Carroll AJ, Raimondi SC, Land VJ, Crist WM, Shuster JJ, Williams DL, Pullen DJ, Borowitz MJ, Behm FG. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood. 1990;75:1170–1177. - PubMed
-
- Charrin C, Thomas X, Ffrench M, Le QH, Andrieux J, Mozziconacci MJ, Laï JL, Bilhou-Nabera C, Michaux L, Bernheim A, Bastard C, Mossafa H, Perot C, et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL) Blood. 2004;104:2444–2451. - PubMed