Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan:43:96-100.
doi: 10.1016/j.gaitpost.2013.11.007. Epub 2014 Feb 2.

Reproducibility of kinematic measures of the thoracic spine, lumbar spine and pelvis during fast running

Affiliations
Free article

Reproducibility of kinematic measures of the thoracic spine, lumbar spine and pelvis during fast running

D L Mason et al. Gait Posture. 2016 Jan.
Free article

Abstract

This study evaluated the reproducibility of the angular rotations of the thoracic spine, lumbar spine, pelvis and lower extremity during running. In addition, the study compared kinematic reproducibility between two methods for calculating kinematic trajectories: a six degrees of freedom (6DOF) approach and a global optimisation (GO) approach. With the first approach segments were treated independently, however with GO approach joint constraints were imposed to stop translation of adjacent segments. A total of 12 athletes were tested on two separate days whilst running over ground at a speed of 5.6ms(-1). The results demonstrated good between-day reproducibility for most kinematic parameters in the frontal and transverse planes with typical angular errors of 1.4-3°. Acceptable repeatability was also found in the sagittal plane. However, in this plane, although kinematic waveform shape was preserved between testing session, there were sometimes shifts in curve offset which lead to slightly higher angular errors, typically ranging from 1.9° to 3.5°. In general, the results demonstrated similar levels of reproducibility for both computational approaches (6DOF and, GO) and therefore suggest that GO may not lead to improved kinematic reproducibility during running.

Keywords: Lumbar; Running kinematics, Pelvis; Thoracic spine kinematics.

PubMed Disclaimer

Publication types

LinkOut - more resources