Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989;3(3):255-85.
doi: 10.1002/syn.890030312.

Fine structure of synaptogenesis in the vertebrate central nervous system

Affiliations
Review

Fine structure of synaptogenesis in the vertebrate central nervous system

J E Vaughn. Synapse. 1989.

Abstract

This article reviews studies of the formation of synaptic junctions in the vertebrate central nervous system. It is focused on electron microscopic investigations of synaptogenesis, although insights from other disciplines are interwoven where appropriate, as are findings from developing peripheral and invertebrate nervous systems. The first part of the review is concerned with the morphological maturation of synapses as described from both qualitative and quantitative perspectives. Next, epigenetic influences on synaptogenesis are examined, and later in the article the concept of epigenesis is integrated with that of hierarchy. It is suggested that the formation of synaptic junctions may take place as an ordered progression of epigenetically modulated events wherein each level of cellular affinity becomes subordinate to the one that follows. The ultimate determination of whether a synapse is maintained, modified or dissolved would be made by the changing molecular fabric of its junctional membranes. In closing, a hypothetical model of synaptogenesis is proposed, and an hierarchial order of events is associated with a speculative synaptogenic sequence. Key elements of this hypothesis are 1) epigenetic factors that facilitate generally appropriate interactions between neurites; 2) independent expression of surface specializations that contain sufficient information for establishing threshold recognition between interacting neurites; 3) exchange of molecular information that biases the course of subsequent junctional differentiation and ultimately results in 4) the stabilization of synaptic junctions into functional connectivity patterns.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources