Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 May 15;55(3):253-98.
doi: 10.1016/0300-483x(89)90018-8.

Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals

Affiliations
Review

Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals

I J Boyer. Toxicology. .

Abstract

Alkyltin compounds are used as stabilizers and antifouling agents. Food chain accumulation and bioconcentration have been demonstrated in crabs, oysters and salmon exposed to tributyltin oxide. In mammalian species, tributyltin compounds may be metabolized to dibutyltin derivatives and related metabolites. Di- and tributyltins appear to be less potent neurotoxicants than trimethyltins and triethyltins. Dibutyltins and tributyltins produced bile duct damage in rats, mice and hamsters. Tributyltin oxide and dibutyltin and dioctyltin compounds are potent thymolytic and immunotoxic agents in rats. Tributyltin oxide at 5 ppm in the rat diet produced immunotoxicity in a 2-year feeding study, and at 50 ppm increased the incidence of tumors of endocrine origin. In preliminary reports, 5 ppm tributyltin produced no detectable increase in tumor incidence, and 0.5 ppm produced no detectable immunotoxicity in long-term studies. Tributyltin oxide and dibutyltin acetate did not appear to be mutagenic in a large battery of mutagenicity assays but produced base-pair substitutions in one of the bacterial strains tested. Tributyltin oxide produced mutations in Chinese hamster ovary cells, increased the incidence of micronuclei in the erythrocytes of exposed male BALB/c mice, and was highly embryotoxic in vitro. Embryotoxic and teratogenic effects in mice exposed to tributyltin oxide in vivo may have been due either to direct tributyltin oxide action or responses secondary to maternal toxicity. More information is needed to determine the applicability to human risk assessments of the immunotoxicity data derived from rat studies and to establish a definitive tolerable daily intake for tributyltin oxide.

PubMed Disclaimer

LinkOut - more resources