Unmyelinated type II afferent neurons report cochlear damage
- PMID: 26553995
- PMCID: PMC4664349
- DOI: 10.1073/pnas.1515228112
Unmyelinated type II afferent neurons report cochlear damage
Abstract
In the mammalian cochlea, acoustic information is carried to the brain by the predominant (95%) large-diameter, myelinated type I afferents, each of which is postsynaptic to a single inner hair cell. The remaining thin, unmyelinated type II afferents extend hundreds of microns along the cochlear duct to contact many outer hair cells. Despite this extensive arbor, type II afferents are weakly activated by outer hair cell transmitter release and are insensitive to sound. Intriguingly, type II afferents remain intact in damaged regions of the cochlea. Here, we show that type II afferents are activated when outer hair cells are damaged. This response depends on both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP released from nearby supporting cells in response to hair cell damage. Selective activation of P2Y receptors increased type II afferent excitability by the closure of KCNQ-type potassium channels, a potential mechanism for the painful hypersensitivity (that we term "noxacusis" to distinguish from hyperacusis without pain) that can accompany hearing loss. Exposure to the KCNQ channel activator retigabine suppressed the type II fiber's response to hair cell damage. Type II afferents may be the cochlea's nociceptors, prompting avoidance of further damage to the irreparable inner ear.
Keywords: ATP; acoustic trauma; hyperacusis; noxacusis; type II cochlear afferents.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Synaptic studies inform the functional diversity of cochlear afferents.Hear Res. 2015 Dec;330(Pt A):18-25. doi: 10.1016/j.heares.2015.09.007. Epub 2015 Sep 25. Hear Res. 2015. PMID: 26403507 Free PMC article.
-
Opposing expression gradients of calcitonin-related polypeptide alpha (Calca/Cgrpα) and tyrosine hydroxylase (Th) in type II afferent neurons of the mouse cochlea.J Comp Neurol. 2018 Feb 15;526(3):425-438. doi: 10.1002/cne.24341. Epub 2017 Nov 13. J Comp Neurol. 2018. PMID: 29055051 Free PMC article.
-
KCa1.1 channel contributes to cell excitability in unmyelinated but not myelinated rat vagal afferents.Am J Physiol Cell Physiol. 2011 Jun;300(6):C1393-403. doi: 10.1152/ajpcell.00278.2010. Epub 2011 Feb 16. Am J Physiol Cell Physiol. 2011. PMID: 21325638 Free PMC article.
-
Damage-evoked signals in cochlear neurons and supporting cells.Front Neurol. 2024 Feb 14;15:1361747. doi: 10.3389/fneur.2024.1361747. eCollection 2024. Front Neurol. 2024. PMID: 38419694 Free PMC article. Review.
-
Efferent Inhibition of the Cochlea.Cold Spring Harb Perspect Med. 2019 May 1;9(5):a033530. doi: 10.1101/cshperspect.a033530. Cold Spring Harb Perspect Med. 2019. PMID: 30082454 Free PMC article. Review.
Cited by
-
Disruption of Atg7-dependent autophagy causes electromotility disturbances, outer hair cell loss, and deafness in mice.Cell Death Dis. 2020 Oct 24;11(10):913. doi: 10.1038/s41419-020-03110-8. Cell Death Dis. 2020. PMID: 33099575 Free PMC article.
-
Talking back: Development of the olivocochlear efferent system.Wiley Interdiscip Rev Dev Biol. 2018 Nov;7(6):e324. doi: 10.1002/wdev.324. Epub 2018 Jun 26. Wiley Interdiscip Rev Dev Biol. 2018. PMID: 29944783 Free PMC article. Review.
-
Synaptic Contributions to Cochlear Outer Hair Cell Ca2+ Dynamics.J Neurosci. 2021 Aug 11;41(32):6812-6821. doi: 10.1523/JNEUROSCI.3008-20.2021. Epub 2021 Jul 12. J Neurosci. 2021. PMID: 34253627 Free PMC article.
-
Clinical phenotype and management of sound-induced pain: Insights from adults with pain hyperacusis.J Pain. 2025 Feb;27:104741. doi: 10.1016/j.jpain.2024.104741. Epub 2024 Nov 23. J Pain. 2025. PMID: 39586560
-
Virally-Mediated Enhancement of Efferent Inhibition Reduces Acoustic Trauma in Wild Type Murine Cochleas.bioRxiv [Preprint]. 2024 Sep 15:2024.09.12.612688. doi: 10.1101/2024.09.12.612688. bioRxiv. 2024. Update in: Mol Ther Methods Clin Dev. 2025 Mar 21;33(2):101455. doi: 10.1016/j.omtm.2025.101455. PMID: 39314296 Free PMC article. Updated. Preprint.
References
-
- Brask T. The noise protection effect of the stapedius reflex. Acta Otolaryngol Suppl. 1979;360:116–117. - PubMed
-
- Guinan JJ., Jr Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006;27(6):589–607. - PubMed
-
- Dauman R, Bouscau-Faure F. Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol. 2005;125(5):503–509. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources