Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 23:6:233.
doi: 10.3389/fphar.2015.00233. eCollection 2015.

Inflammatory stress potentiates emodin-induced liver injury in rats

Affiliations

Inflammatory stress potentiates emodin-induced liver injury in rats

Can Tu et al. Front Pharmacol. .

Erratum in

Abstract

Herbal medicines containing emodin, widely used for the treatment of hepatitis in clinic, have been reported with hepatotoxicity in individuals. A modest inflammatory stress potentiating liver injury has been linked to the idiosyncratic drug-induced liver injury (IDILI). In this study, we investigated the hypothesis that lipopolysaccharide (LPS) interacts with emodin could synergize to cause liver injury in rats. Emodin (ranging from 20, 40, to 80 mg/kg), which is in the range of liver protection, was administered to rats, before LPS (2.8 mg/kg) or saline vehicle treatment. The biochemical tests showed that non-toxic dosage of LPS coupled with emodin caused significant increases of plasma ALT and AST activities as compared to emodin alone treated groups (P < 0.05). In addition, with LPS or emodin alone could not induce any changes in ALT and AST activity, as compared with the control group (0.5% CMC-Na treatment). Meanwhile, the plasma proinflammatory cytokines, TNF-α, IL-1β, and IL-6 increased significantly in the emodin/LPS groups compared to either emodin groups or the LPS (P < 0.05). Histological analysis showed that liver damage was only found in emodin/LPS cotreatmented rat livers samples. These results indicate that non-toxic dosage of LPS potentiates the hepatotoxicity of emodin. This discovery raises the possibility that emodin and herbal medicines containing it may induce liver injury in the inflammatory stress even in their therapeutic dosages.

Keywords: emodin; hepatotoxicity; idiosyncratic drug-induced liver injury; lipopolysaccharide; proinflammatory mediators; therapeutic dosages.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
The Plasma biochemical indicators in the absence and presence of LPS with emodin. Rats were treated with various doses of emodin (20, 40, or 80 mg/kg, i.g.) or its vehicle (0.5% CMC-Na). After 3 h, LPS or emodin/LPS groups animals received LPS (2.8 mg/kg, i.v.) or its vehicle (0.5% CMC-Na). (A) and (B) Blood samples were taken at 7 h after the administration of LPS, and plasma ALT and AST levels were measured. (C) Plasma TBA content were measured from the same conditions. The results were presented as mean ± SD from of 10 rats. Significance of differences was from the value of emodin/LPS rats (*P < 0.05, **P < 0.01 vs emodin groups). For groups, “+” and “–” represent “presence” and “absence,” respectively.
FIGURE 2
FIGURE 2
Chemokine and cytokine expression in rats cotreated with LPS and emodin. Rats were treated with emodin (20, 40, or 80 mg/kg, i.g.) or its vehicle (0.5% CMC-Na) and LPS (2.8 mg/kg, i.v.) or its vehicle (0.5% CMC-Na) as described in Figure 1. (A–C) Showed Plasma proinflammatory cytokine levels determined by ELISA for IL-1β, IL-6, and TNF-α respectively. The data were presented as mean ± SD of 10 rats, and statistically significant difference (*P < 0.05, vs emodin groups; ΔP < 0.05, vs LPS group; #P < 0.05 and ##P < 0.01, vs control).
FIGURE 3
FIGURE 3
Histopathological damage in rats liver given LPS, emodin only and cotreated with LPS/emodin. (A) Liver sections from rats were treated with vehicle (0.5% CMC-Na); (B) with LPS (2.8 mg/kg); (C) emodin (20 mg/kg); (D) emodin (40 mg/kg); (E) emodin (80 mg/kg); (F) LPS/emodin (20 mg/kg); (G) LPS/emodin (40 mg/kg); (H) LPS/emodin (80 mg/kg). Liver samples were collected at 7 h after LPS tail intravenously injection (HE stained, × 200 magnification) and HE staining was performed to investigate the histological changes in all experimental groups.

References

    1. Barton C. C., Barton E. X., Ganey P. E., Kunkel S. L., Roth R. A. (2001). Bacterial lipopolysaccharide enhances aflatoxin B1 hepatotoxicity in rats by a mechanism that depends on tumor necrosis factor α. Hepatology 33, 66–73. 10.1053/jhep.2001.20643 - DOI - PubMed
    1. Bent S., Ko R. (2004). Commonly used herbal medicines in the United States: a review. Am. J. Med. 116, 478–485. 10.1016/j.amjmed.2003.10.036 - DOI - PubMed
    1. Beyoğlu D., Idle J. R. (2013). The metabolomic window into hepatobiliary disease. J. Hepatol. 59, 842–858. 10.1016/j.jhep.2013.05.030 - DOI - PMC - PubMed
    1. Bhadauria M. (2010). Dose-dependent hepatoprotective effect of emodin against acetaminophen-induced acute damage in rats. Exp. Toxicol. Pathol. 62, 627–635. 10.1016/j.etp.2009.08.006 - DOI - PubMed
    1. Cao Q., Wang X. L. (2013). Study and applications of rhubarb licorice root decoctions. Chin. Med. Pharm. 3, 29–30.

LinkOut - more resources