Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Dec;45(12):3222-36.
doi: 10.1002/eji.201545818.

Inflammation in tissue engineering: The Janus between engraftment and rejection

Affiliations
Free article
Review

Inflammation in tissue engineering: The Janus between engraftment and rejection

Annunziata Crupi et al. Eur J Immunol. 2015 Dec.
Free article

Abstract

Tissue engineering (TE) for tissue and organ regeneration or replacement is generally performed with scaffold implants, which provide structural and molecular support to in vitro seeded or in vivo recruited cells. TE implants elicit the host immune response, often resulting in engraftment impediment or rejection. Besides this negative effect, however, the immune system components also yield a positive influence on stem cell recruitment and differentiation, allowing tissue regeneration and healing. Thus, a balanced cooperation between proinflammatory and proresolution players of the immune response is an essential element of implant success. In this context, macrophage plasticity plays a fundamental role. Therefore modulating the immune response, instead of immune suppressing the host, might be the best way to successfully implant TE tissues or organs. In particular, it is becoming evident that the scaffold, immune, and stem cells are linked by a three-way interaction, and many efforts are being made for scaffold-appropriate design and functionalization in order to drive the inflammation process toward regeneration, vascularization, and implant success. This review discusses current and potential strategies for inflammation modulation to aid engraftment and regeneration, supporting the concept that quality, and not quantity, of inflammation might influence implant success.

Keywords: Implant; Macrophage; Scaffold; Stem cell; Tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources