Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model
- PMID: 26558616
- PMCID: PMC4641680
- DOI: 10.1371/journal.pcbi.1004547
Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model
Abstract
Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural) is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.
Conflict of interest statement
Author GG is affiliated with Mperience srl. and this does not alter our adherence to PLOS Computational Biology policies on sharing data and materials. Mperience srl provided support in the form of salaries for author GG, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section. The other authors have declared that no competing interests exist.
Figures
References
-
- Park IPI, Xu DXD, DeMarse TB, Principe JC (2006). Modeling of Synchronized Burst in Dissociated Cortical Tissue: An Exploration of Parameter Space. 10.1109/IJCNN.2006.246734 - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
