Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Nov 11:7:120.
doi: 10.1186/s13148-015-0155-4. eCollection 2015.

Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

Affiliations
Review

Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

Liborio Stuppia et al. Clin Epigenetics. .

Abstract

The correlation between epigenetics and human reproduction represents a very interesting field of study, mainly due to the possible transgenerational effects related to epigenetic modifications of male and female gametes. In the present review, we focused our attention to the role played by epigenetics on male reproduction, evidencing at least four different levels at which sperm epigenetic modifications could affect reproduction: (1) spermatogenesis failure; (2) embryo development; (3) outcome of assisted reproduction technique (ART) protocols, mainly as concerning genomic imprinting; and (4) long-term effects during the offspring lifetime. The environmental agents responsible for epigenetic modifications are also examined, suggesting that the control of paternal lifestyle prior to conception could represent in the next future a novel hot topic in the management of human reproduction.

Keywords: DNA methylation; Epigenetics; Gametogenesis; Male infertility; Transgenerational effect.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Epigenetic modifications during spermatogenesis. During the different steps of spermatogenesis, several epigenetic modifications involving DNA methylations and histone modifications occur. (1) PGCs undergo a process of demethylation involving DNA (with erasure of genomic imprinting) and histones (namely, K4 and K9 residues of H3). Also, a process of H4 deacetylation is present. DNMT3A, DNMT3B, and DNMT3L are expressed at this time. (2) In spermatogonia, a progressive DNA methylation occurs, with establishment of paternal methylation. (3) In spermatocytes, H3K9 and H3K4 methylation is observed. (4) In round spermatids, H4 becomes hyperacetylated, DNMT1 is expressed, and the transition from histones to TPs occurs. (5) Elongated spermatids show a maintenance of DNA methylation, together with H3K9 demethylation. The transition from TPs to protamines occurs at this step. (6) In spermatozoa, the genomic imprinting is maintained
Fig. 2
Fig. 2
Epigenetic alterations induced by lifestyle and environmental factors (diet, smoking, radiation, alcohol consumption, etc.) can have substantial effects on the sperm function. As a first consequence, these modifications can induce sperm alterations leading to impairment of male fertility. When fertilization occurs, spontaneously or by ART, transgenerational epigenetic effects can be observed, in details leading to (1) alterations of embryo development, (2) congenital diseases at birth, and (3) late onset diseases (obesity, hypertension, diabetes, etc.) in the adult life

References

    1. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9:e1001356. - PMC - PubMed
    1. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25:271–85. - PubMed
    1. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14:734–45. - PubMed
    1. Esteves SC. A clinical appraisal of the genetic basis in unexplained male infertility. J Hum Reprod Sci. 2013;6:176–82. - PMC - PubMed
    1. Stuppia L, Gatta V, Calabrese G, Franchi PG, Morizio E, Bombieri C, et al. A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet. 1998;102:566–70. - PubMed