Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2016 Jan 20;34(3):227-34.
doi: 10.1200/JCO.2015.63.1325. Epub 2015 Nov 16.

Upfront Genotyping of DPYD*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis

Affiliations
Clinical Trial

Upfront Genotyping of DPYD*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis

Maarten J Deenen et al. J Clin Oncol. .

Abstract

Purpose: Fluoropyrimidines are frequently prescribed anticancer drugs. A polymorphism in the fluoropyrimidine metabolizing enzyme dihydropyrimidine dehydrogenase (DPD; ie, DPYD*2A) is strongly associated with fluoropyrimidine-induced severe and life-threatening toxicity. This study determined the feasibility, safety, and cost of DPYD*2A genotype-guided dosing.

Patients and methods: Patients intended to be treated with fluoropyrimidine-based chemotherapy were prospectively genotyped for DPYD*2A before start of therapy. Variant allele carriers received an initial dose reduction of ≥ 50% followed by dose titration based on tolerance. Toxicity was the primary end point and was compared with historical controls (ie, DPYD*2A variant allele carriers receiving standard dose described in literature) and with DPYD*2A wild-type patients treated with the standard dose in this study. Secondary end points included a model-based cost analysis, as well as pharmacokinetic and DPD enzyme activity analyses.

Results: A total of 2,038 patients were prospectively screened for DPYD*2A, of whom 22 (1.1%) were heterozygous polymorphic. DPYD*2A variant allele carriers were treated with a median dose-intensity of 48% (range, 17% to 91%). The risk of grade ≥ 3 toxicity was thereby significantly reduced from 73% (95% CI, 58% to 85%) in historical controls (n = 48) to 28% (95% CI, 10% to 53%) by genotype-guided dosing (P < .001); drug-induced death was reduced from 10% to 0%. Adequate treatment of genotype-guided dosing was further demonstrated by a similar incidence of grade ≥ 3 toxicity compared with wild-type patients receiving the standard dose (23%; P = .64) and by similar systemic fluorouracil (active drug) exposure. Furthermore, average total treatment cost per patient was lower for screening (€2,772 [$3,767]) than for nonscreening (€2,817 [$3,828]), outweighing screening costs.

Conclusion: DPYD*2A is strongly associated with fluoropyrimidine-induced severe and life-threatening toxicity. DPYD*2A genotype-guided dosing results in adequate systemic drug exposure and significantly improves safety of fluoropyrimidine therapy for the individual patient. On a population level, upfront genotyping seemed cost saving.

Trial registration: ClinicalTrials.gov NCT00838370.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources