Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 3;119(48):11701-10.
doi: 10.1021/acs.jpca.5b06828. Epub 2015 Nov 17.

Exploring the (H2C═PH2)(+):N-Base Potential Surfaces: Complexes Stabilized by Pnicogen, Hydrogen, and Tetrel Bonds

Affiliations

Exploring the (H2C═PH2)(+):N-Base Potential Surfaces: Complexes Stabilized by Pnicogen, Hydrogen, and Tetrel Bonds

Janet E Del Bene et al. J Phys Chem A. .

Abstract

Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to determine the structures, binding energies, and bonding properties of complexes involving the cation (H2C═PH2)(+) and a set of sp-hybridized nitrogen bases including NCCH3, NP, NCCl, NCH, NCF, NCCN, and N2. On each (H2C═PH2)(+):N-base surface, four types of unique equilibrium structures exist: a complex with a P···N pnicogen bond formed through the π system of (H2C═PH2)(+) (ZB-π); a complex with a P···N pnicogen bond formed through the σ system of (H2C═PH2)(+) (ZB-σ); a hydrogen-bonded complex with a P-H···N hydrogen bond (HB); and a tetrel-bonded complex with a C···N bond (TB). Binding energies of complexes stabilized by the same type of intermolecular interaction decrease in the order NCCH3 > NP > NCCl > NCH > NCF > NCCN > N2. For a given base, binding energies decrease in the order ZB-π > HB > ZB-σ > TB, except for a reversal of HB and ZB-σ with the weakest base N2. Binding energies of ZB-π, HB, and ZB-σ complexes increase exponentially as the corresponding P-N distance decreases, but the correlation is not as good between the binding energies of TB complexes and the intermolecular C-N distance. Charge-transfer energies stabilize all complexes and also exhibit an exponential dependence on the corresponding intermolecular distances. EOM-CCSD spin-spin coupling constants (1p)J(P-N) for ZB-π and ZB-σ complexes, and (2h)J(P-N) for HB complexes increase quadratically as the corresponding P-N distance decreases. Values of (1t)J(C-N) for TB are small and show little dependence on the C-N distance. (1)J(P-H) values for the hydrogen-bonded P-H bond in HB complexes correlate with the corresponding P-H distance, whereas values of (1)J(P-H) for the non-hydrogen-bonded P-H correlate with the P-N distance.

PubMed Disclaimer

LinkOut - more resources