Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Nov-Dec;16(6):1257-61.
doi: 10.3348/kjr.2015.16.6.1257. Epub 2015 Oct 26.

F-18 Fluoride Positron Emission Tomography-Computed Tomography for Detecting Atherosclerotic Plaques

Affiliations
Review

F-18 Fluoride Positron Emission Tomography-Computed Tomography for Detecting Atherosclerotic Plaques

Won Jun Kang. Korean J Radiol. 2015 Nov-Dec.

Abstract

A large number of major cardiovascular events occur in patients due to minimal or some lumen narrowing of the coronary artery. Recent biological studies have shown that the biological composition or vulnerability of the plaque is more critical for plaque rupture compared to the degree of stenosis. To overcome the limitations of anatomical images, molecular imaging techniques have been suggested as promising imaging tools in various fields. F-18 fluorodeoxyglucose (FDG), which is widely used in the field of oncology, is an example of molecular probes used in atherosclerotic plaque evaluation. FDG is a marker of plaque macrophage glucose utilization and inflammation, which is a prominent characteristic of vulnerable plaque. Recently, F-18 fluoride has been used to visualize vulnerable plaque in clinical studies. F-18 fluoride accumulates in regions of active microcalcification, which is normally observed during the early stages of plaque formation. More studies are warranted on the accumulation of F-18 fluoride and plaque formation/vulnerability; however, due to high specific accumulation, low background activity, and easy accessibility, F-18 fluoride is emerging as a promising non-invasive imaging probe to detect vulnerable plaque.

Keywords: Atherosclerosis; Fluoride; PET; Vulnerable plaque.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. F-18 fluoride PET-CT in 80-year-old male with stable angina.
A. CT image shows similar calcifications in left circumflex artery (arrow) and left anterior descending artery (arrowhead). CT findings suggest that there is no difference in macrocalcification. B. F-18 fluoride PET shows high uptake at left circumflex artery (arrow) and mild uptake at left anterior descending artery (arrowhead). F-18 fluoride PET findings suggest that left circumflex artery has more microcalcification than left anterior descending artery, and has high probability for vulnerable plaque. C. PET-CT fusion image (Courtesy of Dr. Jin Chul Paeng in Seoul National University Hospital). PET = positron emission tomography

Similar articles

Cited by

References

    1. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–1672. - PubMed
    1. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3:388–397. - PubMed
    1. Calvert PA, Obaid DR, O'Sullivan M, Shapiro LM, McNab D, Densem CG, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging. 2011;4:894–901. - PubMed
    1. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–C18. - PubMed
    1. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists' view. Eur Heart J. 2013;34:719–728. - PubMed

Publication types

Substances