Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2015 Nov 17:17:96.
doi: 10.1186/s12968-015-0201-6.

Cardiovascular magnetic resonance techniques and findings in children with myocarditis: a multicenter retrospective study

Affiliations
Multicenter Study

Cardiovascular magnetic resonance techniques and findings in children with myocarditis: a multicenter retrospective study

Puja Banka et al. J Cardiovasc Magn Reson. .

Abstract

Background: Cardiovascular magnetic resonance (CMR) is increasingly used to diagnose myocarditis in adults but its use in children is not well-established. We sought to describe the presentation, CMR protocol and findings, and outcomes in a multicenter cohort of children with myocarditis.

Methods: Thirteen hospitals retrospectively identified patients meeting the following inclusion criteria: 1) diagnosis of myocarditis by the managing physicians, 2) age <21 years, 3) CMR examination within 30 days of presentation, and 4) no congenital heart disease. Clinical data and test results, including CMR findings, were abstracted from the medical record.

Results: For the 143 patients meeting inclusion criteria, the median age was 16.0 years (range, 0.1-20.3) and 139 (97 %) were hospitalized at the time of CMR. The median time from presentation to CMR was 2 days (0-28). The median left ventricular ejection fraction at CMR was 56 % (10-74), with 29 (20 %) below 45 %. The median right ventricular ejection fraction was 54 % (15-72), with 11 (8 %) below 40 %. There was significant variability among centers in the types of tissue characterization techniques employed (p < 0.001). Overall, late gadolinium enhancement (LGE) was used in 100 % of studies, followed by T2-weighted imaging (T2W) in 69 %, first-pass contrast perfusion (FPP) in 48 %, and early gadolinium enhancement (EGE) in 28 %. Abnormalities were most common with LGE (81 %), followed by T2W (74 %), EGE (55 %), and FPP (8 %). The CMR study was interpreted as positive for myocarditis in 117 patients (82 %), negative in 18 (13 %), and equivocal in 7 (5 %), yielding a sensitivity of 82 %. At a median follow-up of 7.1 months (0-87), all patients were alive and 5 had undergone cardiac transplantation. CMR parameters at presentation associated with persistent left ventricular dysfunction were larger left ventricular end-diastolic volume and lower left and right ventricular ejection fraction but not abnormal LGE.

Conclusions: Despite significant practice variation in imaging protocol among centers, CMR had a high sensitivity for the diagnosis of myocarditis in pediatric patients. Abnormalities were most often seen with LGE followed by T2W, EGE, and FPP. These findings should be useful in designing future prospective studies.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Typical findings of myocarditis on CMR. 16-year-old patient with a midwall and subepicardial distribution of increased signal intensity in the left ventricle on T2-weighted (a), T1-weighted early gadolinium enhancement (b), and late gadolinium enhancement (c) imaging
Fig. 2
Fig. 2
Practice variability in CMR protocols. Histogram showing the percentage of examinations which included T2-weighted (a), T1-weighted early gadolinium enhancement (b), and late gadolinium enhancement (c) imaging at each of the 13 centers. The number of patients enrolled from each center is provided at the bottom of panel c

References

    1. Cooper LT., Jr Myocarditis. N Engl J Med. 2009;360:1526–1538. doi: 10.1056/NEJMra0800028. - DOI - PMC - PubMed
    1. Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, et al. Update on myocarditis. J Am Coll Cardiol. 2012;59:779–792. doi: 10.1016/j.jacc.2011.09.074. - DOI - PubMed
    1. Ghelani SJ, Spaeder MC, Pastor W, Spurney CF, Klugman D. Demographics, trends, and outcomes in pediatric acute myocarditis in the United States, 2006 to 2011. Circ Cardiovasc Qual Outcomes. 2012;5:622–627. doi: 10.1161/CIRCOUTCOMES.112.965749. - DOI - PubMed
    1. Sachdeva S, Song X, Dham N, Heath DM, DeBiasi RL. Analysis of clinical parameters and cardiac magnetic resonance imaging as predictors of outcome in pediatric myocarditis. Am J Cardiol. 2015;115:499–504. doi: 10.1016/j.amjcard.2014.11.029. - DOI - PubMed
    1. Chow LH, Radio SJ, Sears TD, McManus BM. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol. 1989;14:915–920. doi: 10.1016/0735-1097(89)90465-8. - DOI - PubMed

Publication types

MeSH terms